【题目】如图,一次函数y=kx+b的图象与反比例函数y=
(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.![]()
(1)求一次函数、反比例函数的解析式;
(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.
参考答案:
【答案】
(1)
解:∵AC=BC,CO⊥AB,A(﹣4,0),
∴O为AB的中点,即OA=OB=4,
∴P(4,2),B(4,0),
将A(﹣4,0)与P(4,2)代入y=kx+b得:
,
解得:k=
,b=1,
∴一次函数解析式为y=
x+1,
将P(4,2)代入反比例解析式得:m=8,即反比例解析式为y= ![]()
(2)
解:假设存在这样的D点,使四边形BCPD为菱形,如图所示,连接DC与PB交于E,
∵四边形BCPD为菱形,
∴CE=DE=4,
∴CD=8,
将x=8代入反比例函数y=
得y=1,
∴D点的坐标为(8,1)
∴则反比例函数图象上存在点D,使四边形BCPD为菱形,此时D坐标为(8,1)
![]()
【解析】(1)由AC=BC,且OC⊥AB,利用三线合一得到O为AB中点,求出OB的长,确定出B坐标,从而得到P点坐标,将P与A坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式;(2)假设存在这样的D点,使四边形BCPD为菱形,根据菱形的特点得出D点的坐标.
【考点精析】根据题目的已知条件,利用菱形的判定方法的相关知识可以得到问题的答案,需要掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值:
≈1.7)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
中,
,D,E,F分别为AB,BC,CA上的点,且
,
.(1)求证:
≌
;(2)若
,求
的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,O为直线AB上一点,OC为射线,OD、OE分别为∠AOC、∠BOC的平分线.
(1)判断射线OD、OE的位置关系,并说明理由;
(2)若∠AOD=30°,求证:OC为∠AOE的平分线;
(3)如果∠AOD:∠AOE=2:11,求∠BOE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】移动公司为了方便学生上网查资料,提供了两种上网优惠方法:
A.计时制:0.08元/分钟;B.包月制:40元/月(只限一台电脑上网).
另外,不管哪种收费方式,上网时都得加收通讯费0.03元/分钟.
(1)设小明某月上网时间为x分钟,请分别用含x的式子表示出两种付费方式下小明应支付的费用;
(2)一个月上网时间为多少分钟时,两种方式付费一样多?
(3)如果一个月上网10小时,选择哪种方式更优惠?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.
如方程2x=4和3x+6=0为“兄弟方程”.
(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;
(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;
(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.
相关试题