【题目】按要求完成下列证明
如图,AB∥CD,CB∥DE,求证:∠B+∠D=180°.
证明:∵AB∥CD,
∴∠B=().
∵CB∥DE,
∴∠C+=180°().
∴∠B+∠D=180°.![]()
参考答案:
【答案】∠C;两直线平行,内错角相等;∠D;两直线平行,同旁内角互补
【解析】证明:∵AB∥CD,
∴∠B=∠C (两直线平行,内错角相等),
∵CB∥DE,
∴∠C+∠D=180°(两直线平行,同旁内角互补),
∴∠B+∠D=180°.
所以答案是:∠C,两直线平行,内错角相等;∠D;两直线平行,同旁内角互补.
【考点精析】利用平行线的性质对题目进行判断即可得到答案,需要熟知两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数轴上,点A表示数a,点B表示数b,已知a、b满足(3a+b)2+|b﹣6|=0,
(1)求a、b的值;
(2)若在数轴上存在一点C,使得C到A的距离是C到B的距离的2倍,求点C表示的数;
(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,则∠E与∠F之间满足的数量关系是( )

A.∠E=∠F
B.∠E+∠F=180°
C.3∠E+∠F=360°
D.2∠E﹣∠F=90° -
科目: 来源: 题型:
查看答案和解析>>【题目】要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,需知道相应样本的______(填“平均数”或“频数分布”)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=
(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式;kx+b≤
的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算正确的是( )
A. (a2)3=a6B. a2+a2=a4
C. (3a)(2a)2=6aD. 3a﹣a=3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.

相关试题