【题目】图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.
(1)请画出这个几何体的俯视图;
(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).
![]()
参考答案:
【答案】(1)答案见试题解析;(2)26.6°.
【解析】
试题分析:(1)由图2,画出俯视图即可;
(2)连接EO1,如图所示,由EO1﹣OO1求出EO的长,由BC=AD,O为AD中点,求出OA的长,在Rt△AOE中,利用锐角三角函数定义求出tan∠EAO的值,即可确定出∠EAO的度数.
试题解析:(1)画出俯视图,如图所示:
![]()
(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=
,则∠EAO≈26.6°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式9(a+b)2﹣(a﹣b)2= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是;(填“>”或“<”或“=”)

-
科目: 来源: 题型:
查看答案和解析>>【题目】三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是( )
A. a:b:c =13∶5∶12 B. a2-b2=c2
C. a2=(b+c)(b-c) D. a:b:c=8∶16∶17
-
科目: 来源: 题型:
查看答案和解析>>【题目】某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.
(1)求y关于x的函数表达式;
(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合题
(1)已知关于x的方程
与方程
=x-6的解相同,求m的值.
(2)如果关于x的方程
=0是一元一次方程,求此方程的解 -
科目: 来源: 题型:
查看答案和解析>>【题目】知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.
情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.
情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:
你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?
相关试题