【题目】如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.
(1)若∠BAE=40°,求∠C的度数;
(2)若△ABC周长为14cm,AC=6cm,求DC长.
![]()
参考答案:
【答案】(1)35° (2)4cm
【解析】
(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;
(2)根据已知能推出2DE+2EC=8cm,即可得出答案.
(1)∵AD垂直平分BE,EF垂直平分AC,
∴AB=AE=EC,
∴∠C=∠CAE,
∵∠BAE=40°,
∴∠AED=70°,
∴∠C=
∠AED=35°;
(2)∵△ABC周长14cm,AC=6cm,
∴AB+BE+EC=8cm,
即2DE+2EC=8cm,
∴DE+EC=DC=4cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,花果山上有两只猴子在一棵树CD上的点B处,且BC=5m,它们都要到A处吃东西,其中一只猴子甲沿树爬下走到离树10m处的池塘A处,另一只猴子乙先爬到树顶D处后再沿缆绳DA线段滑到A处.已知两只猴子所经过的路程相等,设BD为xm.
(1)请用含有x的整式表示线段AD的长为______m;
(2)求这棵树高有多少米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料,完成任务:
自相似图形
定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.
任务:
(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为 ;
(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为 ;
(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).
请从下列A、B两题中任选一条作答:我选择 题.
A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);
②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);
B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);
②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】江津四面山是国家5A级风景区,里面有一个景点被誉为亚洲第一岩﹣﹣土地神岩,土地神岩壁画高度从石岩F处开始一直竖直到山顶E处,为了测量土地神岩上壁画的高度,小明从山脚A处,沿坡度i=0.75的斜坡上行65米到达C处,在C处测得山顶E处仰角为26.5°,再往正前方水平走15米到达D处,在D处测得壁画底端F处的俯角为42°,壁画底端F处距离山脚B处的距离是12米,A、B、C、D、E、F在同一平面内,A、B在同一水平线上,EB⊥AB,根据小明的测量数据,则壁画的高度EF为( )米(精确到0.1米,参考数据:sin26.5°≈0.45,cos26.5°≈0.9,tan26.5°≈0.5,sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)

A. 49.5 B. 68.7 C. 69.7 D. 70.2
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=
.反比例函数y=
在第一象限图象经过点A,与BC交于点F.S△AOF=
,则k=( )
A. 15 B. 13 C. 12 D. 5
-
科目: 来源: 题型:
查看答案和解析>>【题目】快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速度继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地,(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图.快车到达甲地时,慢车距离甲地__米.

相关试题