【题目】如图,在△ABD中,AB=AD,将△ABD沿BD对折,使点A翻折到点C,E是BD上一点。且BE>DE,连接AE并延长交CD于F,连接CE.
(1)依题意补全图形;
(2)判断∠AFD与∠BCE的大小关系并加以证明;
(3)若∠BAD=120°,过点A作∠FAG=60°交边BC于点G,若BG=m,DF=n,求AB的长度(用含m,n的代数式表示).
![]()
参考答案:
【答案】(1)见解析;(2)∠BCE=∠AFD;(3)AB=m+n
【解析】
(1)将△ABD沿BD对折,使点A翻折到点C,在BD上取一点E,BE>DE,连接AE并延长交CD于F,连接CE.据此画图即可;
(2)先证出四边形ABCD是菱形,得∠BAF=∠AFD,再证出ΔABE≌ΔCBE,得到∠BCE=∠BAE.,所以∠BCE=∠AFD;
(3)由已知得出ΔACD是等边三角形,所以AD=AC, 再根据∠FAG=60°证出∠CAG=∠DAF,然后证明ΔACG≌ΔADF,得到CG=DF,从而得出AB=BC=m+n..
(1)如图所示:
;
(2) ∠BCE=∠AFD,
理由:
由题意可知:∠ABD=∠CBD,AB=BC=AD=CD
∴四边形ABCD是菱形
![]()
∴∠BAF=∠AFD
在ΔABE和ΔCBE中
![]()
∴ΔABE≌ΔCBE(SAS)
∴∠BCE=∠BAE.
∴∠BCE=∠AFD.
(3)如图
![]()
∵四边形ABCD是菱形,∠BAD=120°,
∴∠CAD=∠CAB=60°
∴ΔACD是等边三角形
∴AD=AC
∵∠GAC+∠FAC=60°,且∠FAC+∠DAF=60°
∴∠CAG=∠DAF
在ΔACG和ΔADF中,
![]()
∴ΔACG≌ΔADF(ASA)
∴CG=DF
∵DF=n,BG=m
∴CG=n
∴BC=m+n
∴AB=BC=m+n.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.

(1)这部分男生有多少人?其中成绩合格的有多少人?
(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?
(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲骑自行年,乙乘坐汽车从A地出发沿同一路线匀速前往B地,甲先出发.设甲行驶的时间为x(h),甲、乙两人距出发点的路程S甲(km)、S乙(km)关于x的函数图象如图1所示,甲、乙两人之同的距离y(km)关于x的函数图象如图2所示,请你解决以下问题:
(1)甲的速度是__________km/h,乙的速度是_______km/h;
(2)a=_______,b=_______;
(3)甲出发多少时间后,甲、乙两人第二次相距7.5km?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=-2x+6与x轴交于点A,与直线y=x交于点B.
(1)点A坐标为_____________.
(2)动点M从原点O出发,以每秒1个单位长度的速度沿着O→A的路线向终点A匀速运动,过点M作MP⊥x轴交直线y=x于点P,然后以MP为直角边向右作等腰直角△MPN.设运动t秒时,ΔMPN与ΔOAB重叠部分的面积为S.求S与t之间的函数关系式,并直接写出t的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:数学课上,老师出示了这祥一个问题:
如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求
的值.某学习小组的同学经过思考,交流了自己的想法:小柏:“通过观察和度量,发现点H是线段EF的中点”。
小吉:“∠BFE=75°,说明图形中隐含着特殊角”;
小亮:“通过观察和度量,发现CO⊥BD”;
小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;
小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;
老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.
请回答:(1)证明FH=EH;
(2)求
的值;(3)若AB=4.MH=
,则GE的长度为_____________.
相关试题