【题目】小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题: ![]()
(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;
(2)求图中t的值;
(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?
参考答案:
【答案】
(1)解:当0≤x≤8时,设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,
依据题意,得
,
解得:
,
故此函数解析式为:y=10x+20;
(2)解:在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=
,
依据题意,得:100=
,
即m=800,
故y=
,
当y=20时,20=
,
解得:t=40;
(3)解:∵45﹣40=5≤8,
∴当x=5时,y=10×5+20=70,
答:小明散步45分钟回到家时,饮水机内的温度约为70℃.
【解析】(1)利用待定系数法代入函数解析式求出即可;(2)首先求出反比例函数解析式进而得出t的值;(3)利用已知由x=5代入求出饮水机内的温度即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】画出函数y=2x+4的图像,并结合图像解决下列问题:
(1)写出方程2x+4=0的解;
(2)当﹣4≤y时,求相应x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,点A、点B的坐标分别为(4,0)、(0,3).
(1)求AB的长度.
(2)如图2,若以AB为边在第一象限内作正方形ABCD,求点C的坐标.

(3)在x轴上是否存一点P,使得⊿ABP是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:四边形AFCE是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个等腰三角形的周长为25cm.
(1)已知腰长是底边长的2倍,求各边的长;
(2)已知其中一边的长为6cm.求其它两边的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AC=6,BC=8,AB=10,∠BCA的平分线与AB的垂直平分线DG交于点D,DE⊥CA的延长线于点E,DF⊥CB于点F.
(1)判断△ABC的形状,并说明理由;
(2)求证:AE=BF;
(3)求DG的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一辆快车与一辆慢车分别从甲、乙两地同时出发,沿同一路线相向 而行,抵达对方出发地时停止运动.设慢车行驶xh时,两车之间的路程为ykm.图中折线ABCD表示y与x的函数关系,根据图像,解决以下问题:
(1)慢车的速度为多少km/h,快车的速度为多少km/h;
(2)解释图中点C的实际意义,求出点C的坐标;
(3)当x取何值时,y=500 ?

相关试题