【题目】下列命题是真命题的是( )
A.对角线互相垂直的四边形是菱形B.对角线相等的菱形是正方形
C.对角线互相垂直且相等的四边形是正方形D.对角线相等的四边形是矩形
参考答案:
【答案】B
【解析】
根据菱形的判定方法、正方形的判定方法以及矩形的判定方法对各选项加以判断即可.
A:对角线互相垂直的平行四边形是菱形,故选项错误,为假命题;
B:对角线相等的菱形是正方形,故选项正确,为真命题;
C:对角线互相垂直且相等的平行四边形是正方形,故选项错误,为假命题;
D:对角线相等的平行四边形是矩形,故选项错误,为假命题;
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有一道题目是一个多项式减去x2+14x6,小强误当成了加法计算,结果得到2x2x+3.原来的多项式是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一元二次方程x2+x﹣2=0的根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根 -
科目: 来源: 题型:
查看答案和解析>>【题目】下列各式中,正确的是( )
A.2a+3b=5ab
B.﹣2xy﹣3xy=﹣xy
C.﹣2(a﹣6)=﹣2a+6
D.5a﹣7=﹣(7﹣5a) -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC( )
A. 三条角平分线的交点 B. 三条中线的交点
C. 三条高的交点 D. 三边垂直平分线的交点
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知m、n是关于x的方程x2+2x﹣1=0的两个不相等的实数根,则m+n=______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=
(其中a,b,c是三角形的三边长,p=
,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴p=
=6∴S=
=
=6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9
(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.

相关试题