【题目】已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)
(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.
①求证:PG=PF;
②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.
(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.
![]()
参考答案:
【答案】(1)①证明见解析;②DG+DF=
DP;(2)不成立,数量关系式应为:DG﹣DF=
DP.
【解析】
试题分析:(1)①若证PG=PF,可证△HPG≌△DPF,已知∠DPH=∠HPG,由旋转可知∠GPF=∠HPD=90°及DE平分∠ADC得△HPD为等腰直角三角形,即∠DHP=∠PDF=45°、PD=PH,即可得证;
②由△HPD为等腰直角三角形,△HPG≌△DPF知HD=
DP,HG=DF,根据DG+DF=DG+GH=DH即可得;
(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,HD=
DP,再证△HPG≌△DPF可得HG=DF,根据DH=DG﹣HG=DG﹣DF可得DG﹣DF=
DP.
试题解析:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵∠PHG=∠PDF,PH=PD,∠GPH=∠FPD,∴△HPG≌△DPF(ASA),∴PG=PF;
②结论:DG+DF=
DP,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴HD=
DP,HG=DF,∴HD=HG+DG=DF+DG,∴DG+DF=
DP;
(2)不成立,数量关系式应为:DG﹣DF=
DP,如图,过点P作PH⊥PD交射线DA于点H,∵PF⊥PG,∴∠GPF=∠HPD=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,∴∠DHP=∠EDC=45°,且PH=PD,HD=
DP,∴∠GHP=∠FDP=180°﹣45°=135°,在△HPG和△DPF中,∵∠GPH=∠FPD,∠GHP=∠FDP,PH=PD,∴△HPG≌△DPF,∴HG=DF,∴DH=DG﹣HG=DG﹣DF,∴DG﹣DF=
DP.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知|a|+|b|+|c|=0,则a= , b= , c=.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )

A.得分在70~80分之间的人数最多
B.该班的总人数为40
C.得分在90~100分之间的人数最少
D.及格(≥60分)人数是26 -
科目: 来源: 题型:
查看答案和解析>>【题目】在数轴上原点右侧的离原点越远的点表示的数越。
-
科目: 来源: 题型:
查看答案和解析>>【题目】将直线y=2x﹣4向上平移6个单位长度后,所得直线的解析式是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】用一条长30cm的绳子围成一个面积为60cm2的长方形,设长方形的长为xcm,则可列方程为 .
相关试题