【题目】如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C![]()
(1)求A、B、C的坐标;
(2)过抛物线上一点F作y轴的平行线,与直线AC交于点G.若FG=
AC,求点F的坐标;
(3)E(0,﹣2),连接BE.将△OBE绕平面内的某点逆时针旋转90°得到△O′B′E′,O、B、E的对应点分别为O′、B′、E′.若点B′、E′两点恰好落在抛物线上,求点B′的坐标.
参考答案:
【答案】
(1)
解:对于抛物线y=﹣x2﹣2x+3,
令x=0得y=3,∴C(0,3),
令y=0,则﹣x2﹣2x+3=0解得x=﹣3或1,
∴A(﹣3,0);B(1,0);C(0,3)
(2)
解:如图1中,
![]()
∵A(﹣3,0),C(03),
∴直线AC解析式为y=x+3,OA=OC=3,
∴AC=3
,FG=
AC=2
设F(m,﹣m2﹣2m+3),则G(m,m+3),
则|﹣m2﹣2m+3﹣(m+3)|=2,
解得m=﹣1或﹣2或
或
,
则F点的坐标为(﹣1,4)或(﹣2,3)或(
,
)或(
,
)
(3)
解:如图2中,旋转90°后,对应线段互相垂直且相等,则BE与B’E’互相垂直且相等.
![]()
设B’(t,﹣t2﹣2t+3),则E’(t+2,﹣t2﹣2t+3﹣1)
∵E’在抛物线上,则﹣(t+2)2﹣2(t+2)+3=﹣t2﹣2t+3﹣1,
解得,t=﹣
,则B’的坐标为(﹣
,
)
【解析】(1)对于抛物线分别令x=0,y=0即可解决问题.(2)先求出AC的解析式,由题意可知FG=2,设F(m,﹣m2﹣2m+3),则G(m,m+3),则有|﹣m2﹣2m+3﹣(m+3)|=2,解方程即可.(3)如图2中,旋转90°后,对应线段互相垂直且相等,则BE与B’E’互相垂直且相等.设B’(t,﹣t2﹣2t+3),则E’(t+2,﹣t2﹣2t+3﹣1).因为E’在抛物线上,则有﹣(t+2)2﹣2(t+2)+3=﹣t2﹣2t+3﹣1,解方程即可.
【考点精析】本题主要考查了二次函数的图象和二次函数的性质的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)

(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1 , 直接写出点A1的坐标;
(2)请画出△ABC绕原点O顺时针旋转90°的图形△A2B2C2 , 直接写出点A2的坐标;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:关于x的方程x2+(8﹣4m)x+4m2=0
(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;
(2)是否存在实数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,我们把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.
猜想结论:(要求用文字语言叙述)
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)

(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1 , 直接写出点A1的坐标;
(2)请画出△ABC绕原点O顺时针旋转90°的图形△A2B2C2 , 直接写出点A2的坐标;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:关于x的方程x2+(8﹣4m)x+4m2=0
(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;
(2)是否存在实数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,我们把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.
猜想结论:(要求用文字语言叙述)
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.
相关试题