【题目】如图,直线y=
x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
![]()
A.(﹣3,0) B.(﹣6,0) C.(﹣
,0) D.(﹣
,0)
参考答案:
【答案】C.
【解析】
试题分析:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
![]()
直线y=
x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,2),点D(0,2).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,2),D′(0,﹣2),所以
,解得:
,即可得直线CD′的解析式为y=﹣
x﹣2.令y=﹣
x﹣2中y=0,则0=﹣
x﹣2,解得:x=﹣
,所以点P的坐标为(﹣
,0).故答案选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB=4cm,AC=BD=3cm.∠CAB=∠DBA=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s),则点Q的运动速度为 cm/s,使得A、C、P三点构成的三角形与B、P、Q三点构成的三角形全等.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某水果店贩卖西瓜、梨子及苹果,已知一个西瓜的价钱比6个梨子多6元,一个苹果的价钱比2个梨子少2元.判断下列叙述何者正确( )
A.一个西瓜的价钱是一个苹果的3倍
B.若一个西瓜降价4元,则其价钱是一个苹果的3倍
C.若一个西瓜降价8元,则其价钱是一个苹果的3倍
D.若一个西瓜降价12元,则其价钱是一个苹果的3倍 -
科目: 来源: 题型:
查看答案和解析>>【题目】若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为( )cm.
A. 10 B. 11 C. 12 D. 13
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在等腰直角△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)求证:△ADC≌△CEB;
(2)求证:AD+BE=DE;
(3)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以说明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】问题背景:“半角问题”:
(1)如图:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.
小明同学探究此“半角问题”的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;(直接写结论,不需证明)

探索延伸:当聪明的你遇到下面的问题该如何解决呢?
(2)若将(1)中“∠BAD=120°,∠EAF=60°”换为∠EAF=
∠BAD.其它条件不变。如图1,试问线段EF、BE、FD具有怎样的数量关系,并证明.(3)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=
∠BAD,请直接写出线段EF、BE、FD它们之间的数量关系.(不需要证明)(4)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=
∠BAD,试问线段EF、BE、FD具有怎样的数量关系,并证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列所述物体中,是球体的是( )
A. 铅笔 B. 打足气的自行车内胎 C. 乒乓球 D. 电视机
相关试题