【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④b2﹣4ac<0;其中正确的结论有( ) ![]()
A.1个
B.2个
C.3个
D.4个
参考答案:
【答案】B
【解析】解:∵抛物线开口向下, ∴a<0,
∵抛物线经过原点,
∴c=0,
则abc=0,所以①正确;
当x=1时,函数值是a+b+c<0,则②错误;
∵抛物线的对称轴为直线x=﹣
=﹣
<0,
∴b=3a<0,
又∵a<0,
∴a>b,则③正确;
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,所以④错误.
故选B.
【考点精析】掌握二次函数图象以及系数a、b、c的关系是解答本题的根本,需要知道二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,A点的坐标为(0,4),B点的坐标为(3,0),C(a,b)为平面直角坐标系内一点,若∠ABC=90°,且BA=BC,求ab的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:抛物线的对称轴为x=﹣1,与x轴交于A,B两点,与y轴交于点C,其中A(﹣3,0)、C(0,﹣2).
(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标.
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )

A. ①②③ B. ②③④ C. ①③④ D. ①②④
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知等腰△ABC中,AD垂直于直线BC,垂足为点D,且AD=
BC,则△ABC底角的度数为( )A. 45° B. 75° C. 45°或75°或15° D. 60°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为 .

相关试题