【题目】在Rt△ABC中,∠C=90°,两锐角的度数之比为2:1,其最短边为1,射线CP交AB所在的直线于点P,且∠ACP=30°,则线段CP的长为_____.
参考答案:
【答案】
或1
【解析】
先根据题意得出两个锐角的度数,再分两种情况:(1)∠A=60°,∠B=30°,CA=1;(2)∠A=30°,∠B=60°,CB=1.分别画图并求解即可.
∵在Rt△ABC中,∠C=90°,两锐角的度数之比为2:1
∴两锐角的度数为:60°,30°.
分两种情况:(1)∠A=60°,∠B=30°,CA=1,
![]()
∵∠ACP=30°,
∴∠APC=90°,
∴PA=
,
∴CP=
=
;
(2)∠A=30°,∠B=60°,CB=1,
![]()
∵∠ACP=30°,
∴∠BCP=60°,
又∵∠B=60°,
∴△BCP为等边三角形,
∴CP=CB=1.
故答案为:
或1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )

A.①②B.②③C.①③D.②④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BAC的平分线交AABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.
(1)求证:DE=DB.
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
(3)若BD=6,DF=4,求AD的长

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,DE的长=________________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:
(1)当为t何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;
(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.在Rt△ABC的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,如图所示.要求:在答题卡的两个备用图中分别画出两种与示例不同的拼接方法,并在图中标明拼接的直角三角形的三边长.(请同学们先用铅笔画出草图,确定后再用0.5毫米的黑色签字笔画出正确的图形)

-
科目: 来源: 题型:
查看答案和解析>>【题目】现场学习题:问题背景:在△ABC中,AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上.
思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为
、
、
(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是: .
相关试题