【题目】如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2).
(1)平移后的三个顶点坐标分别为:.A1( ),B1( ),C1( ).
(2)在上图中画出平移后三角形A1B1C1;
(3)画出△AOA1并求出△AOA1的面积.
![]()
参考答案:
【答案】(1)A1 (3,1)B1 (1,-1)C1(4,﹣2);(2)见解析;(3)6.
【解析】分析:(1)根据点P、P1的坐标确定出平移规律,再求出A1、B1、C1的坐标即可;
(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;
(3)利用△AOA1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
详解:(1)∵点P(a,b)的对应点为P1(a+6,b﹣2),∴平移规律为向右6个单位,向下2个单位,∴A(﹣3,3),B(﹣5,1),C(﹣2,0)的对应点的坐标为A1(3,1),B1(1,﹣1),C1(4,﹣2);
(2)△A1B1C1如图所示;
![]()
(3)△AOA1的面积=6×3﹣
×3×3﹣
×3×1﹣
×6×2=18﹣
﹣
﹣6=18﹣12=6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标.
(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出 A′、B′、C′的坐标,并在图中画出平移后图形.
(3)求出三角形ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)问题发现
如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.

请把下面的证明过程补充完整:
证明:过点E作EF∥AB,
∵AB∥DC(已知),EF∥AB(辅助线的作法),
∴EF∥DC
∴∠C= .
∵EF∥AB,∴∠B= ,
∴∠B+∠C= .
即∠B+∠C=∠BEC.
(2)拓展探究
如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.
(3)解决问题
如图③,AB∥DC,∠C=120°,∠AEC=80°,则∠A= .(直接写出结论,不用写计算过程)
-
科目: 来源: 题型:
查看答案和解析>>【题目】一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:

(1)桥拱半径
(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】某市努力改善空气质量,近年来空气质量明显好转,根据该市环境保护局公布的2010﹣2014这五年各年全年空气质量优良的天数如表所示,根据表中信息回答:
2010
2011
2012
2013
2014
234
233
245
247
256
(1)这五年的全年空气质量优良天数的中位数是________,平均数是________;
(2)这五年的全年空气质量优良天数与它前一年相比增加最多的是________年(填写年份);
(3)求这五年的全年空气质量优良天数的方差________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校举行“做文明郴州人”演讲比赛,聘请了10位评委为参赛选手打分,赛前,组委会拟定了四种记分方案:方案一:取所有评委所给的平均分;
方案二:在所有评委给的分中,去掉一个最高分,去掉一个最低分,取剩余得分的平均分;
方案三:取所有评委给分的中位数;
方案四:取所有评委给分的众数.
为了探究四种记分方案的合理性,先让一名表演选手(不参加正式比赛的)演讲,让10位评委给演讲者评分,表演者得分如下表:
评委编号
1
2
3
4
5
6
7
8
9
10
打分
7.0
7.8
3.2
8.0
8.4
8.4
9.8
8.0
8.4
8.0
(1)请分别用上述四种方案计算表演者的得分;
(2)如果你是评委会成员,你会建议采用哪种可行的记分方案?你觉得哪几种方案不合适?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知甲. 乙两车分别从相距300km的A. B两地同时出发,相向而行,其中甲到B地后立即返回,下图是它们离各自出发地的距离y(km)与行驶时间x(h)之间的函数图象.
(1)求甲车离出发地的距离y与行驶时间x之间的函数关系式,并写出自变量的取值范围;
(2)当它们行驶到与各自出发地的距离相等时甲用了4.5小时,求乙车离出发地的距离y与行驶时间x之间的函数关系式,并写出x的范围;
(3)在(2)的条件下,求它们的行驶过程中相遇的时间.

相关试题