【题目】下列说法中,错误的是( )
A.在直角三角形ABC中,已知两边长为3和4,则第三边长一定为5;
B.三角形的三边a、b、c满足a2+b2=c2,则∠C=90°;
C.△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形;
D.△ABC中,若a:b:c=3:4:5,则这个三角形是直角三角形.
参考答案:
【答案】A
【解析】
利用分类讨论对①进行判断;根据勾股定理的逆定理对②④进行判断;根据三角形内角和计算出∠C的度数,然后根据三角形分类对③进行判断.
解:在直角三角形ABC中,已知两边长为3和4,则第三边长为5或
,所以A错误;
三角形的三边a、b、c满足
,则
,所以B正确;
△ABC中,若∠A:∠B:∠C=1:2:3,则
,所以△ABC是直角三角形,所以C正确;
△ABC中,若a:b:c=3:4:5,则
,所以这个三角形是直角三角形,所以D正确.
故选:A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:
甲:9,10,8,5,7,8,10,8,8,7;
乙:5,7,8,7,8,9,7,9,10,10;
丙:7,6,8,5,4,7,6,3,9,5.
(1)根据以上数据求出表中a,b,c的值;
平均数
中位数
方差
甲
8
8
b
乙
a
8
2.2
丙
6
c
3
(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定,用列举法求甲、乙相邻出场的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一个坡角为30°的斜坡上有一电线杆AB,当太阳光与水平线成45°角时,测得该杆在斜坡上的影长BC为20m.求电线杆AB的高(精确到0.1m,参考数值:
≈1.73,
≈1.41).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.
(1)如图1,求证:∠DAC=∠PAC;
(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,
,连接EF,过点F作AD的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=
DG,PO=5,求EF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:

(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )

A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
相关试题