【题目】如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠BFD的度数.


参考答案:

【答案】
(1)证明:∵△ABC为等边三角形,

∴∠BAE=∠C=60°,AB=CA,

在△ABE和△CAD中,

∴△ABE≌△CAD(SAS)


(2)解:∵∠BFD=∠ABE+∠BAD,

又∵△ABE≌△CAD,

∴∠ABE=∠CAD.

∴∠BFD=∠CAD+∠BAD=∠BAC=60°


【解析】(1)根据等边三角形的性质可知∠BAC=∠C=60°,AB=CA,结合AE=CD,可证明△ABE≌△CAD(SAS);(2)根据∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.

关闭