【题目】如图图形中,既是轴对称图形又是中心对称图形的有( )
![]()
A.1个B.2个C.3个D.4个
参考答案:
【答案】A
【解析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
解:从左起第1个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但不是轴对称图形,故此选项错误;
从左起第2个图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;
从左起第3个图形,此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;
从左起第4个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.
故既是轴对称图形又是中心对称图形的有1个,
故选:A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,函数
(x>0)的图象与直线l1:
交于点A,与直线l2:x=k交于点B.直线l1与l2交于点C.
(1) 当点A的横坐标为1时,则此时k的值为 _______;
(2) 横、纵坐标都是整数的点叫做整点. 记函数
(x>0) 的图像在点A、B之间的部分与线段AC,BC围成的区域(不含边界)为W.①当k=3时,结合函数图像,则区域W内的整点个数是_________;
②若区域W内恰有1个整点,结合函数图象,直接写出k的取值范围:___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线M:y=-x2+2bx+c与直线l:y=9x+14交于点A,其中点A的横坐标为-2.

(1)请用含有b的代数式表示c: ;
(2)若点B在直线l上,且B的横坐标为-1,点C的坐标为(b,5).
①若抛物线M还过点B,直接写出该抛物线的解析式;
②若抛物线M与线段BC恰有一个交点,结合函数图象,直接写出b的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AD>AB,连接AC,将线段AC绕点A顺时针旋转90得到线段AE,平移线段AE得到线段DF(点A与点D对应,点E与点F对应),连接BF,分别交直线AD,AC于点G,M,连接EF.

(1) 依题意补全图形;
(2) 求证:EG⊥AD;
(3) 连接EC,交BF于点N,若AB=2,BC=4,设MB=a,NF=b,试比较
与
之间的大小关系,并证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】将从1开始的连续自然数按图规律排列:
列
行
第1列
第2列
第3列
第4列
第1行
1
2
3
4
第2行
8
7
6
5
第3行
9
10
11
12
第4行
16
15
14
13
…
…
…
…
…
第
行…
…
…
…
规定位于第
行,第
列的自然数10记为
,自然数15记为
…按此规律,自然数2018记为______. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知
的三个顶点的坐标分别为
.(1)若
经过平移后得到
,已知点
的坐标为
,写出顶点
的坐标,画出
;(2)若
和
关于原点
成中心对称图形,写出
的各顶点的坐标;(3)将
绕着点
按顺时针方向旋转
得到
,写出
的各顶点的坐标,并画出
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司为了到高校招聘大学生,为此设置了三项测试:笔试、面试、实习.学生的最终成绩由笔试面试、实习依次按3:2:5的比例确定.公司初选了若干名大学生参加笔试,面试,并对他们的两项成绩分别进行了整理和分析.下面给出了部分信息:
①公司将笔试成绩(百分制)分成了四组,分别为A组:60≤x<70,B组:70≤x<80,C组:80≤x<90,D组:90≤x<100;并绘制了如下的笔试成绩频数分布直方图.其中,C组的分数由低到高依次为:80,81,82,83,83,84,84,85,86,88,88,88,89.
②这些大学生的笔试、面试成绩的平均数、中位数、众数、最高分如下表:
平均数
中位数
众数
最高分
笔试成绩
81
m
92
97
面试成绩
80.5
84
86
92
根据以上信息,回答下列问题:
(1)这批大学生中笔试成绩不低于88分的人数所占百分比为 .
(2)m= 分,若甲同学参加了本次招聘,他的笔试、面试成绩都是83分,那么该同学成绩排名靠前的是 成绩,理由是 .
(3)乙同学也参加了本次招聘,笔试成绩虽不是最高分,但也不错,分数在D组;面试成绩为88分,实习成绩为80分由表格中的统计数据可知乙同学的笔试成绩为 分;若该公司最终录用的最低分数线为86分,请通过计算说明,该同学最终能否被录用?

相关试题