【题目】点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.
![]()
(1)如图1,若∠AOM=30°,求∠CON的度数;
(2)在图1中,若∠AOM=a,直接写出∠CON的度数(用含a的代数式表示);
(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM在射线OB上方,另一边ON在直线AB的下方.
①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;
②当∠AOC=3∠BON时,求∠AOM的度数.
参考答案:
【答案】(1) 15°;(2) ∠CON=
a;(3) ①见解析;②144°.
【解析】
(1)根据角平分线的定义以及补角的定义,可求得∠CON的度数;
(2)可得∠CON=
a;
(3) ①设∠AOM=a,可得
,
,可得∠AOM和∠CON的关系;
②由①知
,
,由∠AOC=3∠BON,可列方程
,可得答案.
.
解:
(1)由已知得∠BOM=180°-∠AOM=150°,
又∠MON是直角,OC平分∠BOM,
所以∠CON=∠MON-
∠BOM=90°-
×150°=15°.
(2)∠CON=
a.
(3)设∠AOM=a,则∠BOM=180°-a,
①∠AOM=2∠CON.
理由如下:
∵OC平分∠BOM,
∴![]()
∵![]()
∴![]()
∴![]()
②由①知![]()
![]()
![]()
∴![]()
解得![]()
∴
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=a(x﹣m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.

(1)如图1,求抛物线y=(x﹣2)2+1的伴随直线的解析式.
(2)如图2,若抛物线y=a(x﹣m)2+n(m>0)的伴随直线是y=x﹣3,伴随四边形的面积为12,求此抛物线的解析式.
(3)如图3,若抛物线y=a(x﹣m)2+n的伴随直线是y=﹣2x+b(b>0),且伴随四边形ABCD是矩形.
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示);若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB交CD于O,OE⊥AB.
(1)若∠EOD=20°,求∠AOC的度数;
(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点 O为数轴原点,点A表示的数是4,将线段OA沿数轴移动,移动后的线段记为O′A′.
(1)当点O′恰好是OA的中点时,数轴上点A′表示的数为 .
(2)设点A的移动距离AA′=x.
①当O′A=1时,求x的值;
②D为线段AA′的中点,点E在线段OO′上,且OE=
OO′,当点D,E所表示的数互为相反数时,求x的值.


-
科目: 来源: 题型:
查看答案和解析>>【题目】我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.
(1)若0<x≤6,请写出y与x的函数关系式.
(2)若x>6,请写出y与x的函数关系式.
(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;
(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是( )

A.16
B.10
C.8
D.6
相关试题