【题目】下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:
已知:直线l和l外一点P.(如图1)
求作:直线l的垂线,使它经过点P.
作法:如图2
(1)在直线l上任取两点A,B;
(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;
(3)作直线PQ.
所以直线PQ就是所求的垂线.
请回答:该作图的依据是 .
![]()
参考答案:
【答案】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).
【解析】
试题分析:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵PA=PQ,PB=PB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】数学问题:计算
(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.
探究一:计算
.第1次分割,把正方形的面积二等分,其中阴影部分的面积为
;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为
;第3次分割,把上次分割图中空白部分的面积继续二等分,…;
…
第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为
,最后空白部分的面积是
.根据第n次分割图可得等式:
=1﹣
.
探究二:计算
.第1次分割,把正方形的面积三等分,其中阴影部分的面积为
;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为
;第3次分割,把上次分割图中空白部分的面积继续三等分,…;
…
第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为
,最后空白部分的面积是
.根据第n次分割图可得等式:
=1﹣
,两边同除以2,得
=
.
探究三:计算
.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:计算
.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)
根据第n次分割图可得等式: ,
所以,
= .拓广应用:计算
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个10×10网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.
(1)画出△ABC关于直线l的对称的△A1B1C1.
(2)画出△ABC关于点P的中心对称图形△A2B2C2.
(3)△A1B1C1与△A2B2C2组成的图形_______________(是或否)轴对称图形,如果是轴对称图形,请画出对称轴.

-
科目: 来源: 题型:
查看答案和解析>>【题目】图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;
(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.a2+a3=a5
B.a2a3=a6
C.a3+a2=a
D.(a2)3=a6 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD平分∠BAC,∠EAD=∠EDA.
(1)∠EAC与∠B相等吗?为什么?
(2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】给出下列说法:
①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;
②三角形的三边a、b、c满足
+
=
,则
C=90
;③△ABC中,若
A:
B:
C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:
,则这个三角形是直角三角形。其中,错误的说法的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
相关试题