【题目】如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)若∠APC=3∠BPC,求
的值.
![]()
参考答案:
【答案】(1)证明见解析;(2)
【解析】(1)如图,连接OP、OB,证明△PAO≌△PBO,根据全等三角形对应角相等可得∠PBO=∠PAO=90°,据此即可证得;
(2)连接BC,设OP交AB于K,首先证明BC=2OK,设OK=a,则BC=2a,再证明BC=PB=PA=2a,由△PAK∽△POA,可得PA2=PKPO,设PK=x,则有:x2+ax﹣4a2=0,解得x=
(负根已经舍弃),推出PK=
,由PK∥BC,可得
.
(1)如图,连接OP、OB,
∵PA是⊙O的切线,
∴PA⊥OA,
∴∠PAO=90°,
∵PA=PB,PO=PO,OA=OB,
∴△PAO≌△PBO.
∴∠PAO=∠PBO=90°,
∴PB⊥OB,
∴PB是⊙O的切线;
(2)如图,连接BC,设OP交AB于K,
∵AB是直径,
∴∠ABC=90°,
∴AB⊥BC,
∵PA、PB都是切线,
∴PA=PB,∠APO=∠BPO,
∵OA=OB,
∴OP垂直平分线段AB,
∴OK∥BC,
∵AO=OC,
∴AK=BK,
∴BC=2OK,设OK=a,则BC=2a,
∵∠APC=3∠BPC,∠APO=∠OPB,
∴∠OPC=∠BPC=∠PCB,
∴BC=PB=PA=2a,
∵△PAK∽△POA,
∴PA2=PKPO,设PK=x,
则有:x2+ax﹣4a2=0,
解得x=
(负根已经舍弃),
∴PK=
,
∵PK∥BC,
∴
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:①②③中,∠A=42°,∠1=∠2,∠3=∠4,则∠O1+∠O2+∠O3=( )度.

A. 84B. 111C. 225D. 201
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲乙两人准备在一段长为1200m的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100m处,两人同时起跑.
(1)两人出发后多长时间乙追上甲?
(2)求从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y(m)与时间t(s)的函数关系,并画出y(m)与时间t(s)的图象.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).

(1)若α=70°,β=40°,求∠DCE的度数;
(2)试用α、β的代数式表示∠DCE的度数(直接写出结果);
(3)如图②,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且α﹣β=30°,求∠DCE的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们定义:在一个三角形中,如果一个角的度数是另一个角度数的3倍,那么这样的三角形我们称之为“和谐三角形”.如:三个内角分别为105°,40°,35°的三角形是“和谐三角形”
概念理解:如图1,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O,B重合)
(1)∠ABO的度数为______,△AOB______(填“是”或“不是”)“和谐三角形”;
(2)若∠ACB=80°,求证:△AOC是“和谐三角形”.
应用拓展:(3)如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC上取点F,使∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“和谐三角形”,求∠B的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题:
(1)线段CD表示轿车在途中停留了 h;
(2)求线段DE对应的函数解析式;
(3)求轿车从甲地出发后经过多长时间追上货车.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一组有规律的图案,它们是由边长相同的正方形和正三角形拼接而成,第①个图案有4个三角形和1个正方形,第②个图案有7个三角形和2个正方形,第③个图案有10个三角形和3个正方形,…依此规律,第n个图案有 ____________个三角形(用含n的代数式表示);

相关试题