【题目】如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+
=0.
![]()
(1)求三角形ABC的面积.
(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.
(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.
参考答案:
【答案】(1)4;(2)45°;(3)P点坐标为(0,3)或(0,﹣1).
【解析】
试题分析:(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;
(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=
×90°=45°;
(3)先根据待定系数法确定直线AC的解析式为y=
x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.
解:(1)∵(a+b)2≥0,
≥0,
∴a=﹣b,a﹣b+4=0,
∴a=﹣2,b=2,
∵CB⊥AB
∴A(﹣2,0),B(2,0),C(2,2)
∴三角形ABC的面积=
×4×2=4;
(2)∵CB∥y轴,BD∥AC,
∴∠CAB=∠ABD,
∴∠3+∠4+∠5+∠6=90°,
过E作EF∥AC,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠3=∠4=∠1,∠5=∠6=∠2,
∴∠AED=∠1+∠2=
×90°=45°;
(3)存在.理由如下:
设P点坐标为(0,t),直线AC的解析式为y=kx+b,
把A(﹣2,0)、C(2,2)代入得
,
解得
,
∴直线AC的解析式为y=
x+1,
∴G点坐标为(0,1),
∴S△PAC=S△APG+S△CPG=
|t﹣1|2+
|t﹣1|2=4,解得t=3或﹣1,
∴P点坐标为(0,3)或(0,﹣1).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】己知代数式3x2﹣6x的值为9,则代数式x2﹣2x+8的值为__.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).

(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1点的坐标及sin∠B1A1C1的值;
(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出 将△ABC放大后的△A2B2C2,并写出A2点的坐标;
(3)若点D(a,b)在线段AB上,直接写出经过(2)的变化后点D的对应点D2的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,过点D作DE⊥AB与点E,点F在边CD上,DF=BE,连接AF,BF

(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知等腰三角形的两条边长分别为2和5,则它的周长为( )
A. 9 B. 12 C. 9或12 D. 5
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形是轴对称图形,其对称轴是_______________________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】点P(a﹣1,b﹣2)关于x轴对称与关于y轴对称的点坐标相同,则P点坐标为( )
A. (﹣1,﹣2) B. (﹣1,0) C. (0,﹣2) D. (0,0)
相关试题