【题目】图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)请写出图2中阴影部分的面积;
(2)观察图2你能写出下列三个代数式之间的等量关系吗?
代数式:(m+n)2 , (m﹣n)2 , mn;
(3)根据(2)中的等量关系,解决如下问题:若a+b=7,ab=5,求(a﹣b)2的值.![]()
参考答案:
【答案】解:(1)(m﹣n)2或(m+n)2﹣4mn;
(2)(m﹣n)2=(m+n)2﹣4mn;
(3)当a+b=7,ab=5时,
(a﹣b)2
=(a+b)2﹣4ab
=72﹣4×5
=49﹣20
=29.
【解析】(1)阴影部分的面积可以看作是边长(m﹣n)的正方形的面积,也可以看作边长(m+n)的正方形的面积减去4个小长方形的面积;
(2)由(1)的结论直接写出即可;
(3)利用(2)的结论,把(a﹣b)2=(a+b)2﹣4ab,把数值整体代入即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=3.
(1)求∠BDC的度数.
(2)求AC的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,a//b,∠1=55°,∠2=40°,求∠3和∠4的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我校八年级学生去距学校15千米远的社会实践基地参加社会实践活动,一部分同学骑自行先走,过了40分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的3倍,求骑车同学的速度?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1:已知△ABC中,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE、CD,请你完成图形(尺规作图,不写作法.但要保留作图痕迹).
(2)如图2,已知△ABC中,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE、CD,判断BE与CD有什么数量关系,并加以证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ACB=90°,AC=BC,AD⊥MN于D,BE⊥MN于E;
(1)当直线MN绕点C旋转到图1的位置时,求证:
①△ADC≌△CEB;②DE=AD+BE.
(2)当直线MN绕点C旋转到图2的位置时,△ADC与△CEB还会全等吗?请直接回答会或不会;请直接猜想此时线段DE,AD,BE之间的数量关系,
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列式子是因式分解的是( )
A.x(x-1)=x
-1
B.x
-x=x(x+1)
C.x
+x=x(x+1)
D.x
-x=(x+1)(x-1)
相关试题