【题目】如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2
;③当AD=2时,EF与半圆相切;④若点F恰好落在
上,则AD=2
;⑤当点D从点A运动到点B时,线段EF扫过的面积是16
.其中正确结论的序号是 . ![]()
参考答案:
【答案】①、③、⑤
【解析】解:①连接CD,如图1所示. ![]()
∵点E与点D关于AC对称,
∴CE=CD.
∴∠E=∠CDE.
∵DF⊥DE,
∴∠EDF=90°.
∴∠E+∠F=90°,∠CDE+∠CDF=90°.
∴∠F=∠CDF.
∴CD=CF.
∴CE=CD=CF.
∴结论“CE=CF”正确.
②当CD⊥AB时,如图2所示.![]()
∵AB是半圆的直径,
∴∠ACB=90°.
∵AB=8,∠CBA=30°,
∴∠CAB=60°,AC=4,BC=4
.
∵CD⊥AB,∠CBA=30°,
∴CD=
BC=2
.
根据“点到直线之间,垂线段最短”可得:
点D在线段AB上运动时,CD的最小值为2
.
∵CE=CD=CF,
∴EF=2CD.
∴线段EF的最小值为4
.
∴结论“线段EF的最小值为2
”错误.
③当AD=2时,连接OC,如图3所示.![]()
∵OA=OC,∠CAB=60°,
∴△OAC是等边三角形.
∴CA=CO,∠ACO=60°.
∵AO=4,AD=2,
∴DO=2.
∴AD=DO.
∴∠ACD=∠OCD=30°.
∵点E与点D关于AC对称,
∴∠ECA=∠DCA.
∴∠ECA=30°.
∴∠ECO=90°.
∴OC⊥EF.
∵EF经过半径OC的外端,且OC⊥EF,
∴EF与半圆相切.
∴结论“EF与半圆相切”正确.
④当点F恰好落在
上时,连接FB、AF,如图4所示.![]()
∵点E与点D关于AC对称,
∴ED⊥AC.
∴∠AGD=90°.
∴∠AGD=∠ACB.
∴ED∥BC.
∴△FHC∽△FDE.
∴
.
∵FC=
EF,
∴FH=
FD.
∴FH=DH.
∵DE∥BC,
∴∠FHC=∠FDE=90°.
∴BF=BD.
∴∠FBH=∠DBH=30°.
∴∠FBD=60°.
∵AB是半圆的直径,
∴∠AFB=90°.
∴∠FAB=30°.
∴FB=
AB=4.
∴DB=4.
∴AD=AB﹣DB=4.
∴结论“AD=2
”错误.
⑤∵点D与点E关于AC对称,![]()
点D与点F关于BC对称,
∴当点D从点A运动到点B时,
点E的运动路径AM与AB关于AC对称,
点F的运动路径NB与AB关于BC对称.
∴EF扫过的图形就是图5中阴影部分.
∴S阴影=2S△ABC
=2×
ACBC
=ACBC
=4×4
=16
.
∴EF扫过的面积为16
.
∴结论“EF扫过的面积为16
”正确.
所以答案是:①、③、⑤.
【考点精析】本题主要考查了垂线段最短和平行线的判定与性质的相关知识点,需要掌握连接直线外一点与直线上各点的所有线段中,垂线段最短;现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用;由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.
特别地,当点P′与圆心C重合时,规定CP′=0
(1)当⊙O的半径为1时.
①分别判断点M(2,1),N(
,0),T(1,
)关于⊙O的反称点是否存在?若存在,求其坐标;
②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;
(2)⊙C的圆心在x轴上,半径为1,直线y=﹣
x+2
与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为( )

A.2cm
B.2
cm
C.4cm
D.4
cm -
科目: 来源: 题型:
查看答案和解析>>【题目】当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )
A.﹣
B.
或 
C.2或
D.2或
或 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB∥CD,∠DCE=118°,∠AEC的角平分线EF与GF相交于点F,∠BGF=132°,则∠F的度数是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在下列解答中,填写适当的理由或数学式:
(1)∵ ∠ABD=∠CDB, ( 已知 )
∴ ∥ . ( )
(2)∵ ∠ADC+∠DCB=180°, ( 已知 )
∴ ∥ . ( )
(3)∵ AD∥BE, ( 已知 )
∴ ∠DCE=∠ . ( )
(4)∵ ∥ , ( 已知 )
∴ ∠BAE=∠CFE. ( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在△ABC中,BO、CO是角平分线.
(1)∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.
(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.
(3)若∠A=n°,求∠BOC的度数.

相关试题