【题目】小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是( )
A.互相平分B.相等
C.互相垂直D.平分一组对角
参考答案:
【答案】A
【解析】
根据平行四边形、正方形、矩形的性质可知,它们的对角线都具有同一性质是:对角线互相平分.
因为矩形、菱形、正方形都是特殊的平行四边形,而平行四边形的对角线互相平分,所以平行四边形、矩形、菱形、正方形的对角线都具有一个共同的性质,这条性质是对角线互相平分.
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知等腰三角形两边长是8cm和4cm,那么它的周长是( )
A. 12cm B. 16cm C. 16cm或20cm D. 20cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是( )
A.OA=OB=OC=OD,AC⊥BDB.AB∥CD,AC=BD
C.AD∥BC,∠A=∠CD.OA=OC,OB=OD,AB=BC
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是( )

A.CE=
DE B.CE=
DE C.CE=3DE D.CE=2DE -
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣
,y2)、点C(
,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
相关试题