【题目】如图1,E是等边三角形ABC的边AB所在直线上一点,D是边BC所在直线上一点,且D与C不重合,若EC=ED.则称D为点C关于等边三角形ABC的反称点,点E称为反称中心.
在平面直角坐标系xOy中,
(1)已知等边三角形AOC的顶点C的坐标为(2,0),点A在第一象限内,反称中心E在直线AO上,反称点D在直线OC上.
①如图2,若E为边AO的中点,在图中作出点C关于等边三角形AOC的反称点D,并直接写出点D的坐标:___.
②若AE=2,求点C关于等边三角形AOC的反称点D的坐标;
(2)若等边三角形ABC的顶点为B(n,0),C(n+1,0),反称中心E在直线AB上,反称点D在直线BC上,且2≤AE<3.请直接写出点C关于等边三角形ABC的反称点D的横坐标t的取值范围:P_____(用含n的代数式表示).![]()
参考答案:
【答案】(1)①(-1,0)②D(-2,0);(2)n-3<t≤n-2或n+2≤t<n+3.
【解析】
(1)①过点E作EF⊥OC,垂足为F,根据等边三角形的性质可得DF=FC=
,OF=
,即可求OD=1,即可求点D坐标;
②分点E与坐标原点O重合或点E在边OA的延长线上两种情况讨论,根据反称点定义可求点D的坐标;
(2)分点E在点E在AB的延长线上或在BA的延长线上,根据平行线分线段成比例的性质,可求CF=DF的值,即可求点D的横坐标t的取值范围.
(1)①如图,过点E作EF⊥OC,垂足为F,![]()
∵EC=ED,EF⊥OC
∴DF=FC,
∵点C的坐标为(2,0),
∴AO=CO=2,
∵点E是AO的中点,
∴OE=1,
∵∠AOC=60°,EF⊥OC,
∴∠OEF=30°,
∴OE=2OF=1
∴OF=
,
∵OC=2,
∴CF=
=DF,
∴DO=1
∴点D坐标(-1,0)
故答案为:(-1,0)
②∵等边三角形AOC的两个顶点为O(0,0),C(2,0),
∴OC=2.
∴AO=OC=2.
∵E是等边三角形AOC的边AO所在直线上一点,且AE=2,
∴点E与坐标原点O重合或点E在边OA的延长线上,
如图,若点E与坐标原点O重合,![]()
∵EC=ED,EC=2,
∴ED=2.
∵D是边OC所在直线上一点,且D与C不重合,
∴D点坐标为(-2,0)
如图,若点E在边OA的延长线上,且AE=2,![]()
∵AC=AE=2,
∴∠E=∠ACE.
∵△AOC为等边三角形,
∴∠OAC=∠ACO=60°.
∴∠E=∠ACE=30°.
∴∠OCE=90°.
∵EC=ED,
∴点D与点C重合.
这与题目条件中的D与C不重合矛盾,故这种情况不合题意,舍去,
综上所述:D(-2,0)
(2)∵B(n,0),C(n+1,0),
∴BC=1,
∴AB=AC=1
∵2≤AE<3,
∴点E在AB的延长线上或在BA的延长线上,
如图点E在AB的延长线上,过点A作AH⊥BC,过点E作EF⊥BD![]()
∵AB=AC,AH⊥BC,
∴BH=CH=
,
∵AH⊥BC,EF⊥BD
∴AH∥EF
,
若AE=2,AB=1
∴BE=1,
∴
=1
∴BH=BF=![]()
∴CF=
=DF
∴D的横坐标为:n-
-
=n-2,
若AE=3,AB=1
∴BE=2,
∴
=![]()
∴BF=2BH=1
∴CF=DF=2
∴D的横坐标为:n-1-2=n-3,
∴点D的横坐标t的取值范围:n-3<t≤n-2,
如图点E在BA的延长线上,过点A作AH⊥BC,过点E作EF⊥BD,![]()
同理可求:点D的横坐标t的取值范围:n+2≤t<n+3,
综上所述:点D的横坐标t的取值范围:n-3<t≤n-2或n+2≤t<n+3.
故答案为:n-3<t≤n-2或n+2≤t<n+3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在
中,
,
,
分别是线段
,
上的一点,且
.
(1)如图 1,若
,
是
中点,则
的度数为______.(2)借助图2探究并直接写出
和
的数量关系____________. -
科目: 来源: 题型:
查看答案和解析>>【题目】在
中,
,
,
平分
交
于
,
,
在
,
上,且
.
(1)求
的度数;(2)求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线l:y=
x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=
x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A1(1,0)在x轴上,过点A1作A1B1∥y轴交直线y=
x于点B1,以A1B1为边在A1B1的右侧作等边△A1B1C1,再过点C1作A2B2∥y轴,分别交直线x轴和直线y=
x于A2,B2两点,再以A2B2为边在A2B2的右侧作等边△A2B2C2…,按此规律进行下去,则等边△AnBnCn的面积为_____(用含正整数n的代数式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(3,4)、B(1,1)、C(4,2).
(1)画出△ABC绕点B逆时针旋转90°后得到的△A1BC1,其中A、C分别和A1、C1对应.
(2)平移△ABC,使得A点落在x轴上,B点落在y轴上,画出平移后的△A2B2C2,其中A、B、C分别和A2B2C2对应.
(3)填空:在(2)的条件下,设△ABC,△A2B2C2的外接圆的圆心分别为M、M2,则MM2= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a∥b∥c.若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是( )

A.70B.74C.144D.148
相关试题