【题目】为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
参考答案:
【答案】解:(1)由题意得:
,
∴w与x的函数关系式为:
。
(2)
,
∵﹣2<0,∴当x=30时,w有最大值.w最大值为200。
答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元。
(3)当w=150时,可得方程﹣2(x﹣30)2+200=150,解得x1=25,x2=35。
∵35>28,∴x2=35不符合题意,应舍去。
答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元。
【解析】
试题(1)根据销售额=销售量×销售价单x,列出函数关系式。
(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值。
(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α, 以OC为边作等边三角形OCD,连接AD.

(1)当α=150°时,试判断△AOD的形状,并说明理由;
(2)探究:当a为多少度时,△AOD是等腰三角形?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac; ②b<0;③y随x的增大而减小; ④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是( )

A. ①②④ B. ①④ C. ①③④ D. ②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角? (填“是”或“不是”).
小丽经过三次折叠发现了∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是( )

A.他们都骑了20 km
B.两人在各自出发后半小时内的速度相同
C.甲和乙两人同时到达目的地
D.相遇后,甲的速度大于乙的速度
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有( )个平行四边形

A.22B.24C.26D.28
-
科目: 来源: 题型:
查看答案和解析>>【题目】某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系是
.请回答下列问题:
(1)柱子OA的高度是多少米?
(2)喷出的水流距水平面的最大高度是多少米?
(3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?
相关试题