【题目】已知am=4,an=3,则a2m+n= .
参考答案:
【答案】48
【解析】
根据同底数幂的乘法得出a2man,根据幂的乘方得出(am)2an,代入求出即可.
解:∵am=4,an=3,
∴a2m+n=a2man=(am)2an=42×3=48,
故答案为:48.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小华用500元去购买单价为3元的一种商品,剩余的钱数y(元)与购买这种商品的件数x(件)之间的关系是__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①所示,直线L:y=m(x+10)与x轴负半轴、y轴正半轴分别交于A、B两点.

(1)当OA=OB时,试确定直线L的解析式;
(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN的长;
(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.
问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若一个多边形的内角和等于外角和的3倍,求这个多边形的边数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=
x2+bx+c与x轴交于点A(﹣2,0),交y轴于点B(0,
).直线y=kx
过点A与y轴交于点C,与抛物线的另一个交点是D.
(1)求抛物线y=
x2+bx+c与直线y=kx
的解析式;(2)设点P是直线AD下方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;
(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m与x的函数关系式,并求出m的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)在如图所示的平面直角坐标系中表示下面各点:
A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);
(2)A点到原点的距离是 .
(3)将点C向x轴的负方向平移6个单位,它与点 重合.
(4)连接CE,则直线CE与y轴是什么位置关系?
(5)点D分别到x、y轴的距离是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某数学活动小组在一次活动中,对一个数学问题作如下探究:

问题发现:如图1,在等边三角形ABC中,点M是边BC上任意一点,连接AM,以AM为边作等边三角形AMN,连接CN,证明:BM=CN.
变式探究:如图2,在等腰三角形ABC中,BA=BC,∠ABC=∠α,点M为边BC上任意一点,以AM为腰作等腰三角形AMN,MA=MN,使∠AMN=∠ABC,连接CN,请求出
的值.(用含α的式子表示出来)解决问题:如图3,在正方形ADBC中,点M为边BC上一点,以AM为边作正方形作AMEF,N为正方形AMEF的中心,连接CN,若正方形AMEF的边长为
,CN=
,请你求正方形ADBC的边长.
相关试题