【题目】如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于( )
![]()
A. 9 B. 35 C. 45 D. 无法计算
参考答案:
【答案】C
【解析】
由勾股定理求出BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,再代入可得MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2),化简可求得结果.
在Rt△ABD和Rt△ADC中,
BD2=AB2-AD2,CD2=AC2-AD2,
在Rt△BDM和Rt△CDM中,
BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,
∴MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2)
=AC2-AB2
=45.
故选:C
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,假设航空母舰始终以200千米/时的速度由西向东航行,飞机以800千米/时的速度从舰上起飞,向西航行执行任务,如果飞机在空中最多能连续飞行3个小时,那么它在起飞_____小时后就必须返航,才能安全停在舰上.

-
科目: 来源: 题型:
查看答案和解析>>【题目】历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示,例如f(x)=x2+3x﹣5,把x=某数时多项式的值用f(某数)来表示,例如x=1时多项式x2+3x﹣5的值记为f(1)=12+3×1﹣5=﹣1.
(1)已知g(x)=﹣2x2﹣3x+1,分别求出g(﹣1)和g(﹣2)的值.
(2)已知h(x)=ax3+2x2﹣x﹣14,
,求a的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是( )

A. 6
B. 6C. 3
D. 3+3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交于O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.
(Ⅰ)直接写出点B坐标
;判断△OBP的形状
;
(Ⅱ)将抛物线沿对称轴平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP;
(i)若抛物线向下平移m个单位长度,当S△PCD=
S△POC时,求平移后的抛物线的顶点坐标;
(ii)在平移过程中,试探究S△PCD和S△POD之间的数量关系,直接写出它们之间的数量关系及对应的m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题8分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在每个边长都为1的小正方形组成的网格中,点A,B,C均为格点.
(Ⅰ)线段AB的长度等于
(Ⅱ)若P为线段AB上的动点,以PC、PA为邻边的四边形PAQC为平行四边形,当PQ长度最小时,请你借助网格和无刻度的直尺画出该平行四边形,并简要说明你的作图方法(不要求证明).
相关试题