【题目】已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.
![]()
(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)若点P在线段AB上.
①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;
②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.
参考答案:
【答案】(1)证明见解析;(2)①△ACE是直角三角形;②a:b=
:1,∠AEC=45°.
【解析】
试题分析:(1)根据正方形的性质和全等三角形的判定定理证明△APE≌△CFE,根据全等三角形的性质证明结论;
(2)①根据正方形的性质、等腰直角三角形的性质解答;
②根据PE∥CF,得到
,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.
试题解析:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵AP=CF,∠P=∠F,PE=EF,∴△APE≌△CFE,∴EA=EC;
(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;
②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a
∵PE∥CF,∴
,即
,解得:
;
作GH⊥AC于H,∵∠CAB=45°,∴HG=
AG=
=
,又BG=2b﹣a=
,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°,∴a:b=
:1;∴∠AEC=45°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某批发商欲将一批水果由A地运往B地,汽车货运公司和铁路货运公司均开办此项运输业务,设运输过程中的损耗均为200元每小时,两货运公司的收费项:目及收费标准如下表所示:
运输工具
途中平均速度
(千米/时)运费
(元/千米)装卸费用
(元)汽车
80
20
900
火车
100
15
2000
(1)设该两地间的距离为x千米,若汽车货运公司和铁路货运公司的总费用分别为y1(元)和y2(元),则y1=元,y2=元;(用含x的代数式表示y1和y2)
(2)如果汽车的总费用比火车的总费用多ll00元,求A,B两地的距离为多少千米?
(3)若两地间距离为200千米,且火车、汽车在路上耽误的时间分别为2小时和3.1小时,若你是经理,选择哪种运输方式更合算些?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.
(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.
①求证:FA=DE;
②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;
(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某学校全体教职工年龄的频数分布直方图(每组年龄包含最小值,不包含最大值),根据图形提供的信息,下列说法中错误的是( )

A.该学校教职工总人数是50人
B.这一组年龄在40≤x<42小组的教职工人数占该学校全体教职工总人数的20%
C.教职工年龄的中位数一定落在40≤x<42这一组
D.教职工年龄的众数一定在38≤x<40这一组 -
科目: 来源: 题型:
查看答案和解析>>【题目】若a<1,则|a-1|=。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )

A.样本中位数是200元
B.样本容量是20
C.该企业员工捐款金额的平均数是180元
D.该企业员工最大捐款金额是500元 -
科目: 来源: 题型:
查看答案和解析>>【题目】在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的
,且数据有160个,则中间一组的频数为( )
A.32
B.0.2
C.40
D.0.25
相关试题