【题目】如图,在四边形
中,
,
、
分别是
、
的中点.
![]()
(
)求证:
.
(
)若
,求
的度数.
参考答案:
【答案】(1)见解析;(2)![]()
【解析】试题分析:(1)首先由直接三角形的斜边上的中线的性质得出AM=CM,进一步利用等腰三角形的三线合一得出结论;
(2)由直接三角形的斜边上的中线的性质得出AM=MD=MC,利用三角形的内角和得出∠AMD=180°-2∠ADM,∠CMD=180°-2∠CDM,求得∠AMC,进一步利用等腰三角形的性质得出答案即可.
试题解析:
(
)证明:∵M为BD中点,
在Rt△ABD中,AM=
BD,
在Rt△BCD中,CM=
BD,
∴AM=CM,
∴△AMC为等腰三角形,
∵N为AC中点,
∴MN⊥AC.
(
)解:∵M是BD的中点,
∴MD=
BD,
∴AM=DM,
∴∠AMD=180°-2∠ADM,
同理∠CMD=180°-2∠CDM,
∴∠AMC=∠AMD+∠CMD=180°-2∠ADM+180°-2∠CDM=120°,
∵AM=DM,
∴∠1=∠2=30°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,点 D 为 AB的中点.
(1)如果点 P 在线段 BC 上以 1cm/s 的速度由点 B 向点 C 运动,同时,点 Q 在线段 CA 上由点 C 向点 A 运动.
①若点 Q 的运动速度与点 P 的运动速度相等,经过 1 秒后,△BPD 与△CQP 是否全等,请说明理由;
②若点 Q 的运动速度与点 P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?
(2)若点 Q 以②中的运动速度从点 C 出发,点 P 以原来的运动速度从点 B 同时出发,都逆时针沿△ABC 三边运动,则经过 后,点 P 与点 Q 第一次在△ABC 的 边上相遇?(在横线上直接写出答案,不必书写解题过程)

-
科目: 来源: 题型:
查看答案和解析>>【题目】数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰△ABC中,AB=AC,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,点M,N分别为线段BO和CO的中点.求证:四边形EDNM是矩形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将7张如图1所示的长为a,宽为b(a>b)的小长方形纸片按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,求a,b满足的条件.

-
科目: 来源: 题型:
查看答案和解析>>【题目】合并下列多项式中的同类项:
(1)3x2+4x﹣2x2﹣x+x2﹣3x﹣1;
(2)﹣a2b+2a2b;
(3)a3﹣a2b+ab2+a2b﹣2ab2+b3;
(4)2a2b+3a2b﹣
a2b -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为( )

A. 36° B. 45° C. 60° D. 72°
相关试题