【题目】如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分.已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).有下列结论:
①abc>0;②4a﹣2b+c<0;③4a+b=0;④抛物线与x轴的另一个交点是(5,0);⑤点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2.
其中正确的是( )
![]()
A.①②③ B.②④⑤ C.①③④ D.③④⑤
参考答案:
【答案】C
【解析】
试题分析:①先根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号,再根据有理数乘法法则即可判断;
②把x=﹣2代入函数关系式,结合图象即可判断;
③根据对称轴求出b=﹣4a,即可判断;
④根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,即可判断;
⑤先求出点(﹣3,y1)关于直线x=2的对称点的坐标,根据抛物线的增减性即可判断y1和y2的大小.
解:①∵二次函数的图象开口向上,
∴a>0,
∵二次函数的图象交y轴的负半轴于一点,
∴c<0,
∵对称轴是直线x=2,
∴﹣
=2,
∴b=﹣4a<0,
∴abc>0.
故①正确;
②把x=﹣2代入y=ax2+bx+c
得:y=4a﹣2b+c,
由图象可知,当x=﹣2时,y>0,
即4a﹣2b+c>0.
故②错误;
③∵b=﹣4a,
∴4a+b=0.
故③正确;
④∵抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0),
∴抛物线与x轴的另一个交点是(5,0).
故④正确;
⑤∵(﹣3,y1)关于直线x=2的对称点的坐标是(7,y1),
又∵当x>2时,y随x的增大而增大,7>6,
∴y1>y2.
故⑤错误;
综上所述,正确的结论是①③④.
故选:C.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )
A.23,25
B.23,23
C.25,23
D.25,25 -
科目: 来源: 题型:
查看答案和解析>>【题目】下列长度的三条线段能组成三角形的是( )
A. 3,4,8 B. 5,6,11 C. 5,6,10 D. 6,6,13
-
科目: 来源: 题型:
查看答案和解析>>【题目】若x-5能开偶次方,则x的取值范围是( )
A. x≥0 B. x>5 C. x≥5 D. x≤5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知A,B,C三点的坐标分别为(0,a)(b,0)(b,c)(如图所示),其中a,b,c满足关系式(a﹣2)2+
=0,|c﹣4|≤0.
(1)求a,b,c的值;
(2)如果在第二象限内有一点P(m,1),请用含m的代数式表示的面积;
(3)在(2)的条件下,是否存在点P,使△AOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知△ABC中,∠B=90°,AB=BC=4cm,长方形DEFG中,DE=6cm,DG=2cm,点B、C、D、E在同一条直线上,开始时点C与点D重合,然后△ABC沿直线BE以每秒1cm的速度向点E运动,运动时间为t秒,当点B运动到点E时运动停止.(友情提示:长方形的对边平行,四个内角都是直角.)

(1)直接填空:∠BAC=_________度,
(2)当t为何值时,AB与DG重合(如图2所示),并求出此时△ABC与长方形DEFG重合部分的面积.
(3)探索:当6≤t≤8时,△ABC与长方形DEFG重合部分的图形的内角和的度数(直接写出结论及相应的t值,不必说明理由).
-
科目: 来源: 题型:
查看答案和解析>>【题目】现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,合肥市某家小型“大学生自主创业”的快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递总件数的月平均增长率;
(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
相关试题