【题目】图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.
![]()
(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);
(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于 .
参考答案:
【答案】(1)作图见试题解析;(2)
.
【解析】
试题分析:(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;
(2)由八边形ABCDEFGH是正八边形,求得∠AOD的度数,得到
的长,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.
试题解析:(1)如图所示,八边形ABCDEFGH即为所求;
![]()
(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=
×3=135°,∵OA=5,∴
的长=
=
,设这个圆锥底面圆的半径为R,∴2πR=
,∴R=
,即这个圆锥底面圆的半径为
.故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度数;
(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)
(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于
GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;
(2)若∠A=100°,求∠EBC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案: (i)甲队单独完成这项工程刚好如期完成;
(ii)乙队单独完成这项工程要比规定日期多用6天;
(iii)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.
试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AE∥BF,AC平分∠BAD,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.

(1)若AB=1,则BC的长=;
(2)求证:四边形ABCD是菱形. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O为△ABC的外接圆,圆心O在AB上.
(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);
(2)如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC于F.
①求证:OD⊥BC;
②求EF的长.

相关试题