【题目】计算:(
)﹣1﹣(2﹣
)0﹣2sin60°+|
﹣2|
参考答案:
【答案】解:(
)﹣1﹣(2﹣
)0﹣2sin60°+|
﹣2| =2﹣1﹣2×
+2﹣ ![]()
=1﹣
+2﹣ ![]()
=3﹣2 ![]()
【解析】首先计算乘方和乘法,然后从左向右依次计算,求出算式(
)﹣1﹣(2﹣
)0﹣2sin60°+|
﹣2|的值是多少即可.
【考点精析】掌握零指数幂法则和整数指数幂的运算性质是解答本题的根本,需要知道零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某体育文化用品商店购进篮球和排球共30个,进价和售价如下表,若全部销售完后共可获利润1680元.
篮球
排球
进价(元/个)
150
120
售价(元/个)
200
180
(1)请利用二元一次方程组求购进篮球和排球各多少个?
(2)“双11”快到了,这个体育文化用品商店也准备搞促销活动,计划篮球9折销售,排球8折销售,则销售8个篮球的利润与销售几个排球的利润相等?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.
已知:如图1,直线l和直线l外一点P.
求作:直线l的平行直线,使它经过点P.
作法:如图2.
(i)过点P作直线m与直线l交于点O;
(ii)在直线m上取一点A(OA<OP),以点O为圆心,OA长为半径画弧,与直线l交于点B;
(iii)以点P为圆心,OA长为半径画弧,交直线m于点C,以点C为圆心,AB长为半径画弧,两弧交于点D;
(iv)作直线PD.
所以直线PD就是所求作的平行线.
请回答:该作图的依据是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC,D为BC边的中点,BE平分∠ABC,交AD于E,F为△ABC外一点,且∠ACF=
∠ACB,BE=CF,
(1)求证:∠BAF=3∠BAD
(2)若DE=5,AE=13,求线段AB的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy,直线y=x﹣1与y轴交于点A,与双曲线y=
交于点B(m,2).
(1)求点B的坐标及k的值;
(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式. -
科目: 来源: 题型:
查看答案和解析>>【题目】一个三位数,若十位上的数字是百位数字与个位数字的和,我们称这个三位数叫“圣诞数”,并且把这个“圣诞数”的前两位组成的两位数记为m,后两位组成的两位数记为n,并规定d=
。如一个三位数385,
3+5=8,
385是“圣诞数”,且m=38,n=85,则d=
=
.(1)写出最小的“圣诞数”;
(2)求证:任意一个“圣诞数”是11的倍数;
(3)求出所有能被8整除的“圣诞数”,并直接写出这些“圣诞数”中d的最小值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.
(1)求证:CE∥GF;
(2)试判断∠AED与∠D之间的数量关系,并说明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.

相关试题