【题目】每年11月的最后一个星期四是感恩节,小龙调查了初三年级部分同学在感恩节当天将以何种方式表达感谢帮助过自己的人.他将调查结果分为如下四类:A类﹣﹣当面致谢;B类﹣﹣打电话;C类﹣﹣发短信息或微信;D类﹣﹣写书信.他将调查结果绘制成如图不完整的扇形统计图和条形统计图:
![]()
请你根据图中提供的信息完成下列各题:
(1)补全条形统计图;
(2)在A类的同学中,有3人来自同一班级,其中有1人学过主持.现准备从他们3人中随机抽出两位同学主持感恩节主题班会课,请你用树状图或表格求出抽出的两人都没有学过主持的概率.
参考答案:
【答案】(1)见解析;(2)![]()
【解析】试题分析:(1)观察统计图,先用A类的人数除以它所占的百分比得到总人数,再利用扇形统计图计算出C类人数,接着计算出D类人数,然后补全条形统计图;
(2)通过列表法展示所有12种等可能情况,再找出1人主持过班会而另一人没主持过班会的结果数,然后根据概率公式求解.
解:(1)调查的学生总数为5÷10%=50(人),
C类人数为50×
=15(人),
D类人数为50﹣5﹣15﹣12=18(人),
条形统计图为:
![]()
(2)设主持过班会的两人分别为A1、A2,另两人分别为B1、B2,填表如下:
结果 第二人
第一人 A1A2B1B2
A1(A1,A2) (A1,B1) (A1,B2)
A2(A2,A1) (A2,B1) (A2,B2)
B1(B1,A1) (B1,A2) (B1,B2)
B2(B2,A1) (B2,A2) (B2,B1)
由列表可知,共有12种等可能情况,其中有8种符合题意,
所以P(抽出1人主持过班会而另一人没主持过班会)=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解某中学男生的身高情况,随机抽取若干名男生进行身高测量,将所得到的数据整理后,画出频数分布直方图(如图),图中从左到右依次为第1,2,3,4,5组.

(1)求抽取了多少名男生测量身高?
(2)身高在哪个范围内的男生人数最多?(答出是第几小组即可)
(3)若该中学有300名男生,请估计身高为170cm及170cm以上的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )
A.
B.

C.
D.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若线段AB=10cm,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系中,点A(m,﹣2)、B(1,n﹣m)关于x轴对称,则m、n的值为( )
A. m=1,n=1 B. m=﹣1,n=1 C. m=1,n=3 D. m=1,n=﹣3
-
科目: 来源: 题型:
查看答案和解析>>【题目】正六边形的每个外角是 度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
与x轴交于A,B两点(点A在点B的左侧),与y交于点C,∠BAC的平分线与y轴交于点D,与抛物线相交于点Q,P是线段AB上一点,过点P作x轴的垂线,分别交AD,AC于点E,F,连接BE,BF.
(1)如图1,求线段AC所在直线的解析式;
(2)如图1,求△BEF面积的最大值和此时点P的坐标;
(3)如图2,以EF为边,在它的右侧作正方形EFGH,点P在线段AB上运动时正方形EFGH也随之运动和变化,当正方形EFGH的顶点G或顶点H在线段BC上时,求正方形EFGH的边长.
相关试题