【题目】在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.
光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.
(1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;
(2)当⊙O的半径为1时,如图3,
①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为;
②自点A(﹣1,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为
(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.![]()
参考答案:
【答案】解:(1)答案如图:![]()
(2)![]()
①由题意:∠1=∠2,∠APB=90°,
∴∠1=45°,
∴反射光与切线的夹角为45°.
②由题意:这些反射点组成的多边形是正十二边形,
∴入射光线与反射光线夹角为150°,
∴∠AOP1=30°,∵OP1=1,
∴P1(﹣
,
).
(3)如图:![]()
当反射光PA∥X轴时,反射光线与坐标轴没有交点.
作PD⊥OC,PN⊥OM垂足分别为M,N,设PD=m.
∵∠GPO=∠HPA,∠GPC=∠HPC=90°,
∴∠OPC=∠APC=∠PCO,∴OP=OC,
在RT△PON中,∵ON=PD=m,PN2=1﹣(2﹣m)2 ,
∴PO2=m2+1﹣(2﹣m)2 ,
∵PD∥OM,∵
,∴CP=
,
CD2=(
)2﹣m2 ,
∴OC=ON+CD,
OC2=(
+
)2 ,
由:PO2=OC2得到:(
)2﹣m2=(
+
)2 ,
∴m1=2﹣
,(m2=2+
,m3=4,不合题意舍弃),
∴根据左右对称性得到:满足条件的反射点P的纵坐标:1
.
【解析】(1)(2)两个问题,要根据题意,画出图象,可以解决.
(3)当反射光线平行X轴时,反射光线与坐标轴没有交点,只要求出这样的反射点,就可以解决这个问题了.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,二次函数y=﹣
+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣
+bx+c的图象分别交于B,C两点,点B在第一象限.
(1)求二次函数y=﹣
+bx+c的表达式;
(2)连接AB,求AB的长;
(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ACB=90°,AC=BC=4,M为AB的中点.D是射线BC上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.

(1)如图1,当BD=2时,AN等于多少?,NM与AB的位置关系是?
(2)当4<BD<8时,
①依题意补全图2;
②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;
(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小值是多少?请直接写出结果. -
科目: 来源: 题型:
查看答案和解析>>【题目】把一副三角板如图放置 其中∠ACB=∠DEC=90,∠A=45,∠D=30,斜边 AB=4,CD=5,把三角板DCE绕点C顺时针旋转15得到三角形D1CE (如图二),此时AB与CD1交于点O,则线段AD1的长度为( )

A.
B.
C.
D. 4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=
;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=
+1;将位置②的三角形绕点P2顺时针旋转到位置③可得到点P3时,AP3=
+2…按此规律继续旋转,直至得到点
为止,则
=________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=
,其中
为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中, ∠BAC=90°, AB=AC=2
,点D,E均在边BC上,且∠DAE=45°,若BD=1,则DE=__________.
相关试题