【题目】如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:
(1)经过6秒后,BP= cm,BQ= cm;
(2)经过几秒后,△BPQ是直角三角形?
(3)经过几秒△BPQ的面积等于
cm2?
![]()
参考答案:
【答案】(1)BP=6cm.BQ=12cm,(2)6秒或
秒(3)2秒
【解析】试题分析:(1)根据点P以每秒钟1cm的速度移动,点Q以每秒钟2cm的速度移动,可得经过6秒后,BQ=12cm,BP=6cm;(2)分∠PQB=90°和∠QPB=90°两种情况讨论即可;(3)作QD⊥AB于D,利用等边三角形的性质和勾股定理可得DQ=
x,然后利用三角形的面积公式得出关于x的方程,然后解方程并检验即可.
试题解析:(1)由题意,得
AP=6cm,BQ=12cm,
∵△ABC是等边三角形,
∴AB=BC=12cm,
∴BP=12﹣6=6cm.
(2)∵△ABC是等边三角形,
∴AB=BC=12cm,∠A=∠B=∠C=60°,
当∠PQB=90°时,
∴∠BPQ=30°,
∴BP=2BQ.
∵BP=12﹣x,BQ=2x,
∴12﹣x=2×2x,
解得x=
,
当∠QPB=90°时,
∴∠PQB=30°,
∴BQ=2PB,
∴2x=2(12﹣x),
解得x=6.
答:6秒或
秒时,△BPQ是直角三角形;
(3)作QD⊥AB于D,
![]()
∴∠QDB=90°,
∴∠DQB=30°,
∴DB=
BQ=x,
在Rt△DBQ中,由勾股定理,得
DQ=
x,
∴
=10
,
解得x1=10,x2=2,
∵x=10时,2x>12,故舍去,
∴x=2.
答:经过2秒△BPQ的面积等于10
cm2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:(x+y)(x﹣y)﹣(4x3y﹣8xy3)÷2xy,其中x=1,y=﹣3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把a2﹣2a分解因式,正确的是( )
A. a(a﹣2) B. a(a+2) C. a(a2﹣2) D. a(2﹣a)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )

A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC交AB于F.
(1)若∠ABC=50°,则∠ADC= °,∠AFD= °;
(2)BE与DF平行吗?试说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,锐角△ABC的两条高BE、CD相交于点O,且OB=OC,
(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】三角形的三条边长分别是2,2x-3,6,则x的取值范围是_____.
相关试题