【题目】如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AB=21,AD=9.求AC的长.
![]()
参考答案:
【答案】17
【解析】试题分析:在AB上截取AE=AD,连接EC,作CF⊥AB于点F.可以得出△DAC≌△EAC,从而得到CE=CD=10=BC,利用等腰三角形“三线合一”的性质得到EF=FB=6,在Rt△BFC中和在Rt△AFC中,分别利用勾股定理即可得到结论.
试题解析:解:在AB上截取AE=AD,连接EC,作CF⊥AB于点F.
∵AC平分∠BAD,∴∠DAC=∠EAC.
在△DAC和△EAC中,∵AD=AE,∠DAC=∠EAC,AC=AC,∴△DAC≌△EAC(SAS),
∴CE=CD=10=BC,∴EF=FB=
BE=
(AB﹣AE)=
(AB﹣AD)=6.
在Rt△BFC中,∵BC=10,FB=6,∴CF=8.
在Rt△AFC中,∵CF=8,AF=AE+EF=9+6=15,∴AC=17,∴AC的长为17.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于
AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于( )
A. 2 B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”.在“生长”了2 017次后形成的图形中所有正方形的面积和是( )

图1 图2
A. 2015 B. 2016 C. 2017 D. 2018
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,点B、D分别在∠MAN的两边AM、AN上,点C是射线AP上的一点,连接BC、DC,∠MAN=α,∠BCD=β,(0°<α<180°,0°<β<180°);BE平分∠MBC,DF平分∠NDC.
(1)如图1,若α=β=80°,
①求∠MBC+∠NDC的度数;
②判断BE、DF的位置关系,并说明理由.
(2)如图2,当点C在射线AP上运动时,若直线BE、DF相交于点G,请用含有α、β的代数式表示∠BGD.(直接写结果)

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)在直角坐标系中描出下列各点A(2,1),B(-2,1),C(3,2),D(-3,2);
(2)连结AB、CD观察它们与y轴的关系,
(3)猜想(a,1)(-a,1)两点的连线是否遵循上述规律.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:
,点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度数等于度;
(2)求山坡A、B两点间的距离(结果精确到0.1米).
(参考数据:
≈1.414,
≈1.732) -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)在直角坐标系中描出下列各点A(2,1),B(-2,1),C(3,2),D(-3,2);
(2)连结AB、CD观察它们与y轴的关系,
(3)猜想(a,1)(-a,1)两点的连线是否遵循上述规律.
相关试题