【题目】如图,已知点A1、A2、A3、…、An在x轴上,且OA1=A1A2=A2A3═An﹣1An=1,分别过点A1、A2、A3、…、An作x轴的垂线,交反比例函数y=
(x>0)的图象于点B1、B2、B3、…、Bn , 过点B2作B2P1⊥A1B1于点P1 , 过点B3作B3P2⊥A2B2于点P2 , …,若记△B1P1B2的面积为S1 , △B2P2B3的面积为S2 , …,△BnPnBn+1的面积为Sn , 则S1+S2+…+S2017= . ![]()
参考答案:
【答案】![]()
【解析】解:根据题意可知:点B1(1,2)、B2(2,1)、B3(3,
)、…、Bn(n,
), ∴B1P1=2﹣1=1,B2P2=1﹣
=
,B3P3=
﹣
=
,…,BnPn=
﹣
=
,
∴Sn=
AnAn+1BnPn=
,
∴S1+S2+…+S2017=
+
+
+…+
=1﹣
+
﹣
+
﹣
+…+
﹣
=1﹣
=
.
所以答案是:
.
【考点精析】解答此题的关键在于理解三角形的面积的相关知识,掌握三角形的面积=1/2×底×高.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.

(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,
①当∠EAC=90°时,求PB的长;
②直接写出旋转过程中线段PB长的最小值与最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=
x2+bx﹣
的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.
(1)请直接写出点D的坐标:;
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1 , 当点C1、B1、C三点共线时,旋转角为α,连接BB1 , 交AC于点D.下列结论:①△AC1C为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1 , 其中正确的是( )

A.①③④
B.①②④
C.②③④
D.①②③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】计算下列各题
(1)计算:|
|+(
)﹣1﹣2cos45°
(2)解不等式组
,并把解集在数轴上表示出来. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正比例函数y=ax与反比例函数y=
(x>0)的图象交于点M(
,
).
(1)求这两个函数的表达式;
(2)如图1,若∠AMB=90°,且其两边分别于两坐标轴的正半轴交于点A、B.求四边形OAMB的面积.
(3)如图2,点P是反比例函数y=
(x>0)的图象上一点,过点P作x轴、y轴的垂线,垂足分别为E、F,PF交直线OM于点H,过作x轴的垂线,垂足为G.设点P的横坐标为m,当m>
时,是否存在点P,使得四边形PEGH为正方形?若存在,求出P点的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,已知CA=CB=5,BA=6,点E是线段AB上的动点(不与端点重合),点F是线段AC上的动点,连接CE、EF,若在点E、点F的运动过程中,始终保证∠CEF=∠B.

(1)求证:∠AEF=∠BCE;
(2)当以点C为圆心,以CF为半径的圆与AB相切时,求BE的长;
(3)探究:在点E、F的运动过程中,△CEF可能为等腰三角形吗?若能,求出BE的长;若不能,请说明理由.
相关试题