【题目】如图,正方形ABCD边长为4,点P从点A运动到点B,速度为1,点Q沿B﹣C﹣D运动,速度为2,点P、Q同时出发,则△BPQ的面积y与运动时间t(t≤4)的函数图象是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】B
【解析】解:①点P在AB上运动,点Q在BC上运动,即0≤t≤2,
此时AP=t,BP=4﹣t,QB=2t,故可得y=
PBQB=
(4﹣t)2t=﹣t2+4t,函数图象为开口向下的抛物线;②点P在AB上运动,点Q在CD上运动,即2<t≤4
此时AP=t,BP=4﹣t,△BPQ底边PB上的高保持不变,为正方形的边长4,
故可得y=
BP×4=﹣2t+8,函数图象为直线.
综上可得全过程的函数图象,先是开口向下的抛物线,然后是直线;
故选:B.
本题应分两段进行解答,①点P在AB上运动,点Q在BC上运动,②点P在AB上运动,点Q在CD上运动,依次得出y与t的关系式即可得出函数图象.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.

(1)求经过A,B,C三点的抛物线的函数表达式;
(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;
(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当S△DEF=
S△ABC时,求线段EF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )

A.12.5°
B.15°
C.20°
D.22.5° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=
﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF . 正确的个数是( ) 
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠CAB=30°,∠C=90°.AD=
AC,AB=8,E是AB上任意一点,F是AC上任意一点,则折线DEFB的最短长度为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线l:y=
x+1交x轴于点A,交y轴于点B,点A1、A2、A3 , …在x轴的正半轴上,点B1、B2、B3 , …在直线l上.若△OB1A1 , △A1B2A2 , △A2B3A3 , …均为等边三角形,则△A6B7A7的周长是 . 
相关试题