【题目】如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=
(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.
![]()
参考答案:
【答案】![]()
【解析】
过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.
如图,过点D作DF⊥BC于点F,
![]()
∵四边形ABCD是菱形,
∴BC=CD,AD∥BC,
∵∠DEB=90°,AD∥BC,
∴∠EBC=90°,且∠DEB=90°,DF⊥BC,
∴四边形DEBF是矩形,
∴DF=BE,DE=BF,
∵点C的横坐标为5,BE=3DE,
∴BC=CD=5,DF=3DE,CF=5﹣DE,
∵CD2=DF2+CF2,
∴25=9DE2+(5﹣DE)2,
∴DE=1,
∴DF=BE=3,
设点C(5,m),点D(1,m+3),
∵反比例函数y=
图象过点C,D,
∴5m=1×(m+3),
∴m=
,
∴点C(5,
),
∴k=5×
=
,
故答案为:![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
x 0经过D点,交AB于E点,且OBAC=160,则点E的坐标为( ).
A.(3,8)B.(12,
)C.(4,8)D.(12,4) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O 是△ABC 的外接圆,BC 是直径,AC=2DH,过点 D 作 DH 垂直BC 于点 H,以下结论中:①BH=HD;②∠BAO=∠BOD;③
;④连接 AO、BD,若 BC=8,sin∠HDO=
,则四边形 ABDO 的面积为
, 其中正确的结论是 ____(请填写序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.
(1)抽取学生的总人数是 人,扇形C的圆心角是 °;
(2)补全频数直方图;
(3)该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC 中,∠BAC=90°,分别以 AC 和 BC 为边向外作正方形 ACFG 和正方形 BCDE,过点 D 做 FC 的延长线的垂线,垂足为点 H.

(1)求证:△ABC≌△HDC;
(2)连接 FD,交 AC 的延长线于点 M,若 AG=
,tan∠ABC=
,求△FCM 的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB//DC,AC=10,BD=8.
(1)求证:四边形ABCD是平行四边形;
(2)若AC⊥BD,求平行四边形ABCD的面积.

相关试题