【题目】如图,△ABC中,∠ACB=90°,AB=2,BC=AC,D为AB的中点,E为BC上一点,将△BDE沿DE翻折,得到△FDEEF交AC于点G则△ECG的周长是___________


参考答案:

【答案】

【解析】

连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,

解:(1)如图,连接CD、CF.

∵Rt△ABC中,∠ACB=90°,AC=BC,DAB边的中点,
∴BD=CD=1.BC= ,
由翻折可知BD=DF,
∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,
∴∠DCF=∠DFC,
∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,
∴GC=GF,
∴EG+CG=EG+GF=EF=BE,

∴△ECG的周长=EG+GC+CE=BE+EC=BC=,

故答案为:.

关闭