【题目】已知矩形ABCD的对角线相交于点O,M、N分别是OD、OC上异于O、C、D的点. ![]()
(1)请你在下列条件①DM=CN,②OM=ON,③MN是△OCD的中位线,④MN∥AB中任选一个添加条件(或添加一个你认为更满意的其他条件),使四边形ABNM为等腰梯形,你添加的条件是 .
(2)添加条件后,请证明四边形ABNM是等腰梯形.
参考答案:
【答案】
(1)①DM=CN
(2)证明:∵AD=BC,∠ADM=∠BCN,DM=CN
∴△AMD≌△BCN,
∴AM=BN,由OD=OC知OM=ON,
∴ ![]()
∴MN∥CD∥AB,且MN≠AB
∴四边形ABNM是等腰梯形.
【解析】(1)从4个条件中任选一个即可,可以添加的条件为①.(2)先根据SAS证明△AMD≌△BCN,所以可得AM=BN,有矩形的对角线相等且平分,可得OD=OC即OM=ON,从而知
,根据平行线分线段成比例,所以MN∥CD∥AB,且MN≠AB,即四边形ABNM是等腰梯形.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等,以及对等腰梯形的判定的理解,了解两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市某中学组织学生进行“低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成A、B、C、D、E五个等级,并绘制如图的统计图(不完整)统计成绩.若扇形的半径为2cm,则C等级所在的扇形的面积是cm2 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向向点B匀速运动,若y=AE2﹣EF2 , 则y与动点F的运动时间x(0≤x≤6)秒的函数关系式为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】为庆祝中国共产党建党90周年,6月中旬我市某展览馆进行党史展览,把免费参观票分到学校.展览馆有2个验票口A、B(可进出),另外还有2个出口C、D(不许进).小张同学凭票进入展览大厅,参观结束后离开.
(1)小张从进入到离开共有多少种可能的进出方式?(要求用列表或树状图)
(2)小张不从同一个验票口进出的概率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线y=﹣x﹣2与反比例函数y=
的图象交于A、B两点,且与x、y轴交于C、D两点,A点的坐标为(﹣3,k+4).
(1)求反比例函数的解析式
(2)把直线AB绕着点M(﹣1,﹣1)顺时针旋转到MN,使直线MN⊥x轴,且与反比例函数的图象交于点N,求旋转角大小及线段MN的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】我市某县政府为了迎接“八一”建军节,加强军民共建活动,计划从花园里拿出1430盆甲种花卉和1220盆乙种花卉,搭配成A、B两种园艺造型共20个,在城区内摆放,以增加节日气氛,已知搭配A、B两种园艺造型各需甲、乙两种花卉数如表所示:(单位:盆)
(1)某校某年级一班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮忙设计出来.
(2)如果搭配及摆放一个A造型需要的人力是8人次,搭配及摆放一个B造型需要的人力是11人次,哪种方案使用人力的总人次数最少,请说明理由.造型
数量
花A
B
甲种
80
50
乙种
40
90
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知AB为⊙O直径,以OA为直径作⊙M.过B作⊙M得切线BC,切点为C,交⊙O于E.

(1)在图中过点B作⊙M作另一条切线BD,切点为点D(用尺规作图,保留作图痕迹,不写作法,不用证明);
(2)证明:∠EAC=∠OCB;
(3)若AB=4,在图2中过O作OP⊥AB交⊙O于P,交⊙M的切线BD于N,求BN的值.
相关试题