【题目】如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,﹣2).![]()
(1)求此函数的关系式;
(2)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ACBD分成面积相等的两个四边形,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:∵y=x2+bx+c的顶点为(1,﹣2).
∴y=(x﹣1)2﹣2=x2﹣2x﹣1
(2)
解:设直线PE对应的函数关系式为y=kx+b,根据A,B关于对称轴对称,
可以得出AC=CB,AD=BD,点C关于x轴的对称点D,
故AC=BC=AD=BD,
则四边形ACBD是菱形,
故直线PE必过菱形ACBD的对称中心M.
由P(0,﹣1),M(1,0),
得 ![]()
从而得y=x﹣1,
设E(x,x﹣1)代入y=x2﹣2x﹣1得x﹣1=x2﹣2x﹣1,
解得x1=0,x2=3,
根据题意得点E(3,2)
![]()
(3)
解:假设存在这样的点F,可设F(x,x2﹣2x﹣1),
过点F做FG⊥y轴,垂足为G点.
在Rt△POM和Rt△FGP中,
∵∠OMP+∠OPM=90°,∠FPG+∠OPM=90°,
∠OMP=∠FPG,
又∠MOP=∠PGF,
∴△POM∽△FGP
∴ ![]()
∵OM=1,OP=1,
∴GP=GF,即﹣1﹣(x2﹣2x﹣1)=x,
解得x1=0,x2=1,
根据题意得F(1,﹣2)
以上各步均可逆,故点F(1,﹣2)即为所求,
S△PEF=S△MFP+S△MFE=
2×1
×2×2=3.
![]()
【解析】(1)将顶点坐标C(1,﹣2)代入y=x2+bx+c即可求得此二次函数的关系式;(2)先求出直线PM的解析式,然后与二次函数联立即可解得点E的坐标;(3)根据三角形相似的性质先求出GP=GF,求出F点的坐标,进而求得△PEF的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:经过三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个三角形是等腰三角形,另外一个三角形和原三角形的三个内角分别相等,那么把这条线段定义为原三角形的“和谐分割线”.例如如图1:等腰直角三角形斜边上的中线就是一条“和谐分割线”.
(1)判断(对的打“√”,错的打“×”)
①等边三角形不存在“和谐分割线”
②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”
(2)如图2,Rt△ABC,∠C=90°,∠B=30°,AC=2,请画出“和谐分割线”,并计算“和谐分割线”的长度;
(3)如图3,线段CD是△ABC的“和谐分割线”,∠A=42°,求∠B的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);沿CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图 ⑥).

(1)求图 ②中∠BCB′的大小;
(2)图⑥中的△GCC′是正三角形吗?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC中,AB=AC,BC=acm,∠B=30°.动点P以1cm/s的速度从点B出发,沿折线B﹣A﹣C运动到点C时停止运动.设点P出发x s时,△PBC的面积为y cm2 . 已知y与x的函数图象如图②所示.请根据图中信息,解答下列问题:

(1)试判断△DOE的形状,并说明理由;
(2)当a为何值时,△DOE与△ABC相似? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )

A.AB=AC
B.BD=CD
C.∠B=∠C
D.∠BDA=∠CDA -
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )

A.a>0
B.当x>1时,y随x的增大而增大
C.c<0
D.3是方程ax2+bx+c=0的一个根 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=26°,则∠ACB的度数为 .

相关试题