【题目】已知x=5是方程ax﹣8=20+a的解,则a= .
参考答案:
【答案】7
【解析】解:把x=5代入方程ax﹣8=20+a
得:5a﹣8=20+a,
解得:a=7.
故答案为:7.
使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.

请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了多少名同学?
(2)条形统计图中,m= , n=;
(3)扇形统计图中,热词B所在扇形的圆心角是多少度? -
科目: 来源: 题型:
查看答案和解析>>【题目】计算:48°29′+67°41′= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】命题“如果x2=4,那么x=2”是__________命题(填“真”或“假”).
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=10,AC=2
,BC边上的高AD=6,则另一边BC等于 . -
科目: 来源: 题型:
查看答案和解析>>【题目】请阅读下列材料:
小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠GHN=∠DEP=45°时,求正方形MNPQ的面积.
小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2) .
请回答:
(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边为 ;
(2)求正方形MNPQ的面积.
(3)参考小明思考问题的方法,解决问题:
如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=
,求AD的长. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列分解因式正确的是( )
A. m3-m=m(m-1)(m+1) B. x2-x-6=x(x-1)-6 C. 2a2+ab+a=a(2a+b) D. x2-y2=(x-y)2
相关试题