【题目】感知:如图1,在△ABC中,∠ABC=42°,∠ACB=72°,点D是AB上一点,E是AC上一点,BE、CD相交于点F.
(1)若∠ACD=35°,∠ABE=20°,求∠BFC的度数;
(2)若CD平分∠ACB,BE平分∠ABC,求∠BFC的度数;
探究:如图2,在△ABC中,BE平分∠ABC,CD平分∠ACB,写出∠BFC与∠A之间的数量关系,并说明理由;
应用:如图3,在△ABC中,BD平分∠ABC ,CD平分外角∠ACE,请直接写出∠BDC与∠A之间的数量关系.
![]()
![]()
![]()
参考答案:
【答案】(1)121°;(2)∠BFC=90°+
∠A,证明见解析;(3)∠BDC=
∠A.
【解析】分析:(1)、根据△ABC的内角和定理得出∠A的度数,然后根据∠BEC=∠A+∠ABE得出答案;(2)、根据角平分线的性质得出∠ABE=
∠ABC,∠ACD=
∠ACB,最后根据三角形外角的性质以及三角形内角和定理得出答案;(3)、根据三角形外角的性质以及三角形内角和定理得出答案.
详解:(1)、∵在△ABC中,∠ABC+∠ACB+∠A=180°,又∵∠ABC=42°,∠ACB=72°,
∴∠A=66°, ∵∠BEC=∠A+∠ABE=20°+66°=86°,
又∵∠BFC=∠ACD+∠BEC=35°+86°=121°;
(2)、结论:∠BFC=90°+
∠A,
证明:∵BE平分∠ABC,CD平分∠ACB, ∴∠ABE=
∠ABC,∠ACD=
∠ACB,
∵∠BEC=∠A+∠ABE,∠BFC=∠ACD+∠BEC, ∴∠BFC=∠A+∠ACD+∠ABE,
∴∠BFC=∠A+
∠ABC+
∠ACB, ∵∠A+∠ABC+∠ACB=180°,
∴∠BFC=90°+
∠A;
(3)∠BDC=
∠A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为1个单位长度的小正方形组成的网格中,小正方形的顶点叫做格点,△ABC叫做格点三角形(三角形的顶点都是格点),请按要求完成:
(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请在网格中画出△A1B1C1;
(2)将△A1B1C1绕点B1顺时针旋转90°,得到△A2B1C2,请在网格中画出△A2B1C2;
(3)将△ABC沿直线B1 C2翻折,得到△A3B3C,请在网格中画出△A3B3C;
(4)线段BC沿着由B到B1的方向平移至线段B1C1,求线段BC扫过的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了丰富学生的阅读资源,某校图书馆准备采购文学名著和人物传记两类图书. 经了解,30本文学名著和20本人物传记共需1150元,20本文学名著比20 本人物传记多100元. (注:所采购的文学名著价格都一样,所采购的人物传记价格都一样.)
(1)求每本文学名著和人物传记各多少元?
(2)若学校要求购买文学名著比人物传记多20本,文学名著和人物传记书籍总数不低于85本,总费用不超过2000元,请求出所有符合条件的购书方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若数轴上点A表示的数是-1,则与点A相距3个单位长度的点表示的数是( ).
A.-4B.-3或1C.-4或2D.2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,抛物线y=﹣
x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:
(1)请将表一和图一中的空缺部分补充完整.
(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.
(3)若每票计1分,系里将笔试、口试、得票三项测试得分按
的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.
相关试题