【题目】你知道数学中的整体思想吗?解题中,若把注意力和着眼点放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体加减,能使问题迅速获解.
例题:已知x2+xy=4,xy+y2=-1.求代数式x2-y2的值.
解:将两式相减,得(x2+xy)-(xy+y2)=4-(-1),即x2-y2=5;请用整体思想解答下列问题:
(1)在例题的基础上求(x+y)2的值;
(2)若关于x、y的二元一次方程组
的解也是二元一次方程x+y=6的解,求k的值.
参考答案:
【答案】(1)3 (2)3
【解析】
(1)要使结果化为(x+y)2 ,因此将两式相加后,将等式的左边分解因式,可得出结果;
(2)观察方程组中同一未知数的系数特点:x的系数之和为3,y的系数之和为3,而已知x+y=6,因此将原方程组中的两方程相加,再除以3,可得到x+y=2k,然后根据整体代入建立关于k的方程,解方程求出k的值.
(1)解:将两式相加,得
,
,
.
(2)解:将两式相减,得
,
,
故
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面是小东设计的“作矩形”的尺规作图过程,已知:

求作:矩形

作法:如图,
①作线段
的垂直平分线角交
于点
;②连接
并延长,在延长线上截取
③连接

所以四边形
即为所求作的矩形
根据小东设计的尺规作图过程
(1)使用直尺和圆规,补全图形:(保留作图痕迹)
(2)完成下边的证明:
证明:
,
,
四边形是平行四边形( )(填推理的依据)
四边形
是矩形( )(填推理的依据) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:
(1)求证:△BEF∽△DCB;
(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;
(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?试说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:
(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】南浔区某校组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有120千米,队伍乘大巴车8:00从学校出发.苏老师因有事情,8:30从学校自驾小汽车以大巴车1.5倍的速度追赶,追上大巴车后继续前行,结果比队伍提前10分钟到达基地.问:
(1)设大巴午的平均速度是x(km/h),利用速度、时间和路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(温馨提示:请填写在答题卷相对应的表格内)
速度(km/h)
路程(km)
时间(h)
大巴车
x
120
________
小汽车
________
120
________
(2)列出方程,并求出大巴车与小汽车的平均速度.
(3)当苏老师追上大巴车时,大巴车离基地还有多远?
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题情境:如图1,AB∥CD,∠A=30°,∠C=40°,求∠AEC的度数.小明的思路是:


(1)初步尝试:按小明的思路,求得∠AEC的度数;
(2)问题迁移:如图2,AB∥CD,点E、F为AB、CD内部两点,问∠A、∠E、∠F和∠D之间有何数量关系?请说明理由;
(3)应用拓展:如图3,AB∥CD,点E、F为AB、CD内部两点,如果∠E+∠EFG=160°,请直接写出∠B与∠D之问的数量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】福州电信公司开设了A、B两种市内移动通信业务:A种使用者每月需缴18元月租费,然后每通话1分钟,再付话费0.1元;B种使用者不缴月租费,每通话1分钟,付话费0.3元.若一个月内通话时间为x分钟,A、B两种的费用分别为
和
元.(1)试分别写出
、
与x之间的函数关系式;(2)每月通话时间为多长时,开通A种业务和B种业务费用一样.
相关试题