【题目】n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4)?

(探究)为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有Pn种.

探究一用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?

如图,图,显然,只有2种不同的分割方案.所以,P4=2.

探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?

不妨把分割方案分成三类:

1类:如图③,用A,EB连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.

2类:如图④,用A,EC连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为种分割方案.

3图⑤,用A,ED连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.

所以,P5 =++=()

探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?

不妨把分割方案分成四类:

1类:如图⑥,用A,FB连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种不同的分割方案.

2类:如图⑦,用A,FC连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案

3类:如图⑧,用A,FD连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案.

4类:如图⑨,用A,FE连接,先把六边形分割转化成1个三角形和1个五边形.再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.

所以,P6 =()

探究四:用七边形的对角线把七边形分割成5个三角形,则P7P6的关系为:

P7 = ,共有_____种不同的分割方案.……

(结论)用n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4)?(直接写出PnPn -1的关系式,不写解答过程).

(应用)用八边形的对角线把八边形分割成6个三角形,共有多少种不同的分割方案? (应用上述结论,写出解答过程)


参考答案:

【答案】18;42;;132

【解析】

根据题意找到P4,P5,P6之间的关系,进行猜想,然后验证,写出答案.

P4=2,P5 =,P6= ,根据规律可得P7 ===42,进一步推导规律: ,根据公式,P8==132.

关闭