【题目】如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是( )
![]()
A.
B.
C.
D. ![]()
参考答案:
【答案】B
【解析】
由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABC,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确;③无法证明得到.
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等边三角形;
②符合题意;
在△ABC和△EAD中
![]()
∴△ABC≌△EAD(SAS);
①符合题意;
∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴S△FCD=S△ABC,
又∵△AEC与△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF;④符合题意.
若AD与AF相等,即∠AFD=∠ADF=∠DEC
即EC=CD=BE
即BC=2CD,
题中未限定这一条件
∴③不符合题意;
∴①②④符合题意,
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得的线段CD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列各式及其验证过程:

按照上述两个等式及其验证过程的基本思路,猜想
的变形结果并进行验证;
针对上述各式反应的规律,写出用
为任意自然数,且
表示的等式,并说明它成立. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为( )

A. 3 B. 6 C. 8 D. 9
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm

-
科目: 来源: 题型:
查看答案和解析>>【题目】在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),

(1)在图1中,图①经过一次变换(填“平移”或“旋转”或“轴对称”)可以得到图②;
(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点(填“A”或 “B”或“C”);
(3)在图2中画出图①绕点A顺时针旋转90°后的图④. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:
(1)该班共有______名同学参加这次测验;
(2)这次测验成绩的中位数落在______分数段内;
(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?

相关试题