【题目】认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的我们可以计算出多项式的展开式,如:(a+b)1=a+b,
(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,…下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数是可以单独列成表中的形式:![]()
上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)
展开式中共有多少项?
(2)请写出多项式
的展开式?
参考答案:
【答案】 (1) (n+1)项;(2) a6b+5a5b2+10a4b3+10a3b4+5a2b5+ab6
【解析】试题分析:(1)由题意可求得当n=1,2,3,4,…时,多项式(a+b)n的展开式是一个几次几项式,然后找规律,即可求得答案;
(2)根据规律可直接写出结果.
试题解析:(1)n+1项
(2)
=a6b+5a5b2+10a4b3+10a3b4+5a2b5+ab6
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.

(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕。

(1)试判断B'E与DC的位置关系并说明理由。
(2)如果∠C=130°,求∠AEB的度数。
-
科目: 来源: 题型:
查看答案和解析>>【题目】命题:①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短.其中真命题的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的方程(k﹣2)x|k﹣1|+5=0是一元一次方程,那么k=_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的有( )
①最大的负整数是﹣1;
②数轴上表示﹣3和3的点到原点的距离相等;
③1.32×104是精确到百分位;
④a+6一定比a大;
⑤(﹣2)4与﹣24结果相等.
A. 2个 B. 3个 C. 4个 D. 0个
相关试题