【题目】数学兴趣活动课上,小明将等腰△ABC的底边BC与直线1重合,问:
(1)已知AB=AC=6,∠BAC=120°,点P在BC边所在的直线l上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小明发现AP的最小值是 ;
(2)为进一步运用该结论,小明发现当AP最短时,在Rt△ABP中,∠P=90°,作了AD平分∠BAP,交BP于点D,点E、F分别是AD、AP边上的动点,连接PE、EF,小明尝试探索PE+EF的最小值,为转化EF,小明在AB上截取AN,使得AN=AF,连接NE,易证△AEF≌△AEN,从而将PE+EF转化为PE+EN,转化到(1)的情况,若BP=3
,AB=6,AP=3,则PE+EF的最小值为 ;
(3)请应用以上转化思想解决问题(3),在直角△ABC中,∠C=90°,∠B=30°,AC=10,点D是CD边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,求线段CP的最小值.
![]()
参考答案:
【答案】(1)3;(2)
;(3)PC的最小值为5.
【解析】
(1)如图1中,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.
(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.由△EAN≌△EAF(SAS),推出EN=EF,推出PE+EF=PE+NE,推出当P,E,N共线且与PH重合时,PE+PF的值最小,最小值为线段PH的长.
(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.
解:(1)如图1中,作AH⊥BC于H.
![]()
∵AB=AC=6,AH⊥BC,
∴∠BAH=∠CAH=
∠BAC=60°,
∴AH=ABcos60°=3,
根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为3.
故答案为3.
(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.
![]()
∵∠EAN=∠EAF,AN=AF,AE=AE,
∴△EAN≌△EAF(SAS),
∴EN=EF,
∴PE+EF=PE+NE,
∴当P,E,N共线且与PH重合时,PE+PF的值最小,最小值为线段PH的长,
∵
ABPH=
PAPB,
∴PH=
=
,
∴PE+EF的最小值为
.
故答案为
.
(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.
![]()
∵∠ACB=90°,∠B=30°,
∴∠CAK=60°,
∴∠PAD=∠CAK,
∴∠PAC=∠DAK,
∵PA=DA,CA=KA,
∴△PAC≌△DAK(SAS),
∴PC=DK
∵KD⊥BC时,KD的值最小,最小值为5,
∴PC的最小值为5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_____秒时,△BCA与点P、N、B为顶点的三角形全等.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场购进甲、乙两种空调共40台.已知购进一台甲种空调比购进一台乙种空调进价多0.2万元;用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍.请解答下列问题:
(1)求甲、乙两种空调每台进价各是多少万元?
(2)若商场预计投入资金不多于11.5万元用于购买甲、乙两种空调,且购进甲种空调至少14台,商场有哪几种购进方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰直角△ABC中,BC=AC,∠ACB=90°,将该三角形在直角坐标系中放置.

(1)如图(1),过点A作AD⊥x轴,当B点为(0,1),C点为(3,0)时,求OD的长;
(2)如图(2),将斜边顶点A、B分别落在y轴上、x轴上,若A点为(0,1),B点为(4,0),求C点坐标;
-
科目: 来源: 题型:
查看答案和解析>>【题目】解分式方程:
(1)
(2)
(3)
(4)
-
科目: 来源: 题型:
查看答案和解析>>【题目】用工件槽(如图1)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图1所示的A、B、E三个接触点,该球的大小就符合要求.图2是过球心O及A、B、E三点的截面示意图,求这种铁球的直径.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.

相关试题