【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
![]()
参考答案:
【答案】(1)12(2)当x=11时,y最小=88平方米
【解析】(1)根据题意得方程解即可;
(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(30-2x)=-2x2+30x,根据二次函数的性质求解即可.
解: (1)苗圃园与墙平行的一边长为(30-2x)米.依题意可列方程
x(30-2x)=72,即x2-15x+36=0.
解得x1=3(舍去),x2=12.
(2)依题意,得8≤30-2x≤18.解得6≤x≤11.
面积S=x(30-2x)=-2(x-
)2+
(6≤x≤11).
①当x=
时,S有最大值,S最大=
;
②当x=11时,S有最小值,S最小=11×(30-22)=88
“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点
为直线
上一点,过点
作射线
,使
,将一把直角三角尺的直角顶点放在点
处,一边
在射线
上,另一边
在直线
的下方,其中
.
(1)将图1中的三角尺绕点
顺时针旋转至图2,使一边
在
的内部,且恰好平分
,求
的度数;(2)将图1中三角尺绕点
按每秒10的速度沿顺时针方向旋转一周,旋转过程中,在第 秒时,边
恰好与射线
平行;在第 秒时,直线
恰好平分锐角
.(3)将图1中的三角尺绕点
顺时针旋转至图3,使
在
的内部,请探究
与
之间的数量关系,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0),…,那么点A2019的坐标为( )

A. (1008,1)B. (1009,1)C. (1009,0)D. (1010,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,EF//AD,∠1=∠2,∠BAC=70°,请将求∠AGD 的过程补充完整.

解:∵EF//AD
∴∠2= ( )
∵∠1=∠2 ∴∠1=∠3 ( )
∴AB//
( )∴∠BAC+ =180° ( )
∵∠BAC=70° ∴∠AGD= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】正方形ABCD内接于⊙O,如图所示,在劣弧
上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:
(1)四边形EBFD是矩形;
(2)DG=BE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低,若该果园每棵果树产果y千克,增种果树x棵,它们之间的函数关系如图所示.

(1)求y与x之间的函数解析式;
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?
(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
相关试题